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Abstract: The paper deals with the robust output feedback controller design with 
guaranteed cost and affine quadratic stability for linear continuous time systems. The 
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1. INTRODUCTION 

 
During the last two decades numerous papers dealing 
with the design of robust output feedback control 
schemes to stabilize such systems have been 
published (Goh et al., 1995; Iwasaki et al., 1994; 
Cao et al., 1998; Veselý, 2002). Various approaches 
have been used to study the two aspects of the robust 
stabilization problem, namely conditions under 
which the linear system described in state space can 
be stabilized via output feedback and the respective 
procedure to obtain a stabilizing or robustly 
stabilizing control law. 
 
The necessary and sufficient conditions to stabilize 
linear continuous time invariant systems via static 
output feedback can be found in (Kučera and de 
Souza, 1995) and in (Veselý, 2001). In the above and 
other papers, authors basically conclude that despite 
the availability of many approaches and numerical 
algorithms the static output feedback problem is still 
open. 
 
Recently, it has been shown that an extremely wide 
array of robust controller design problems can be 
reduced to the problem of finding a feasible point 

under a Biaffine Matrix Inequality (BMI) constraint. 
The BMI has been introduced in (Goh et al., 1995). 
In this paper, the BMI problem of robust controller 
design with output feedback is reduced to an LMI 
problem (Boyd et al., 1994). The theory of linear 
matrix inequalities (LMI) has been used to design 
robust output feedback controllers in several design 
methods (Henrion et al., 2002; Veselý, 2001). Most 
of above works present iterative algorithms in which 
solution of a set of equations or set of LMI problems 
is repeated until certain convergence criteria are met. 
 
Description of uncertain linear systems with affine 
parameter uncertainties and comprehensive 
development using the notion of quadratic stability 
by LMI approach are presented in (Boyd et al., 
1994). To reduce quadratic stability conservatism in 
robust controller design procedure the affine 
parameter dependent Lyapunov function has been 
introduced (Gahinet et al., 1996; Yang and Lum, 
2005) which is less conservative than quadratic 
stability. Recently, more general parameter-
dependent Lyapunov functions have been exploited 
to develop less conservative robust stability criteria 
(de Oliveira et al., 2000; Peaucelle et al., 2000; 
Henrion et al., 2002; Grman et al., 2004). 



     

 
This paper addresses the robust controller design 
problem with a new guaranteed cost function for a 
class of uncertain linear time-invariant systems, 
where the system matrices affinely depend on the 
uncertain parameters. Affine parameter-dependent 
Lyapunov functions are exploited to robust controller 
design, which guarantee affine quadratic stability in 
terms of linear matrix inequalities. 
 
The proposed robust controller design method is 
based on the robust stability analysis results of 
(Peaucelle et al., 2000), modified for robust 
controller design with guaranteed cost. Obviously, a 
performance of LQR problem includes state and 
control vectors. In the paper a new LQR criterion is 
proposed, which includes the vectors: of state 
derivative, state and control. This criterion allows 
taking into account some constraints on the rate of 
state variable changes.  
 
The aims of this paper are the following: 
1) to investigate the new guaranteed cost function in 

the robust affine controller design and 
2) to provide a numerical comparison of the 

proposed robust affine controller design 
procedure with the following methods: 
- the affine controller design method based on 

the affine robust stability analysis proposed 
by (Gahinet et al., 1996) using linearization 
approach (Han and Skelton, 2003); 

- the affine controller design method based on 
robust stability analysis proposed by 
(Peaucelle et al., 2000) using linearization 
approach (Han and Skelton, 2003) and the 
new convexification function; 

- the parameter dependent Lyapunov function 
robust controller design method based on 
the robust stability analysis proposed by 
(Peaucelle et al., 2000) using linearization 
approach (Han and Skelton, 2003). 

 
The paper is organized as follows. In Section 2 the 
problem formulation and some preliminary results 
are presented. Main results are given in Section 3. In 
Section 4 the obtained theoretical results are applied 
to some examples.  
 
 

2. PROBLEM FORMULATION 
AND PRELIMINARIES 

 
In the context of robustness analysis and synthesis of 
robust controller for linear time invariant systems the  
following uncertain model is commonly used 
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where ( ) ntx R∈ , ( ) mtu R∈  and ( ) lty R∈  are the 
state, control and output vectors, respectively; 

[ ] p
p R∈= θθθ ,,1 K  is the vector of uncertain and  

 
possibly time varying real parameters; ( )θA , ( )θB  
and ( )θC  are matrices of appropriate dimensions 
affinely depending on θ  
 
 ( ) ppAAAAA θθθθ ++++= K22110  

 ( ) ppBBBBB θθθθ ++++= K22110  (2) 

 ( ) ppCCCCC θθθθ ++++= K22110  
 

where ppp CCBBAA ,,,,,,,, 000 KKK  are known 
fixed matrices. Note, that in order to keep the 
polytope affine property, the matrix ( )θB  or ( )θC  
has to be precisely known. In the following we 
assume that ( )θC  is known and equal to the matrix 
C. In general, a polytope description of uncertainties 
results in a less conservative controller design than 
other characterizations of uncertainty (Boyd et al., 
1994). 
 
The closed loop system (1) with the control 
algorithm 
 
 ( ) ( )tFCxtu =  (3) 
 
is given as follows 
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The system represented by (4) is a polytope of linear 
affine systems, which can be described by a list of its 
vertices 

 
 ( ) ( ) NitxDtx ci ,,2,1, K& ==  (5) 

 
where pN 2= . The system represented by (5) is 
quadratically stable if and only if there exists a 
Lyapunov matrix 0>P  such that 

 
 NiPDPD ci

T
ci ,,2,1,0 K=<+  (6) 

 
A weakness of quadratic stability is that it guards 
against arbitrary fast parameter variations. As a 
result, this test tends to be conservative for constant 
or slow-varying parameters θ . To reduce 
conservatism when (4) is affine in θ  and the 
parameters of system are time invariant, in (Gahinet 
et al., 1996), the parameter-dependent Lyapunov 
function ( )θP  has been used in the form 
 
 ( ) ppPPPP θθθ +++= K110  (7) 

 
A robust controller design procedure with guaranteed 
cost and affine quadratic stability based on (Gahinet 
et al., 1996) has been proposed in (Veselý, 2002). In 
this paper, we pursue the idea of (Peaucelle et al.,  



     

 
2000) and introduce a new robust affine controller 
LMI design procedure with guaranteed cost. 
 
The following definition and theorem by (Gahinet et 
al., 1996) will be heavily exploited in the next 
development. 
 
Definition 1. The linear system (4) is affine 
quadratically stable if there exist p+1 symmetric 
matrices P0, P1, ..., Pp such that 

 
( ) 0110 >+++= ppPPPP θθθ K  (8) 

and 
 ( ) ( ) ( ) ( ) 0, >= txPtxxV T θθ  (9) 
 

( )
=

dt
xdV θ,   (10) 
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⎠
⎞

⎜
⎝
⎛ ++= tx
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T
c
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for [ ]pθθθ ,,1 K= . □ 
 
Note that the quadratic stability corresponds to the 
case when .021 ==== pPPP K  The sufficient 
affine quadratic stability conditions are given in the 
next theorem (Gahinet et al., 1996). 
 
Theorem 1. Consider a linear system governed by 
(4), where ( )θcA  depends affinely on the uncertain 
parameter vector [ ]pθθθ ,,1 K=  and iθ  satisfies 
 

iiiiii ννθθθθ ,,,
.

∈∈  for pi ,,2,1 K=  (11) 
 

where iiii ννθθ ,,,  are known lower and upper 

bounds. Let Γ  and Λ  denote sets of pN 2=  
vertices of the parameters box (11) and the rate of 
variation box (11), respectively 
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and let 
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denote the average value of the parameter vector.  
 
This system is affine quadratically stable if ( )mcA θ  
is stable and if there exist p+1 symmetric matrices 

pPP ,,0 K  such that ( ) 0>θP  satisfies 
 

( ) ( ) ( ) ( ) ( ) ( ) 0, 0 <−++= PPAPPAL c
T

c λγγγγλγ   
  (14) 
 
 

 
for all ( ) Λ×Γ∈λγ ,  and 
 
 0≥+

ii cii
T
c APPA    for pi ,,2,1 K=  (15) 

 
where FCBAA iici

+= . □ 
 
For scalar quadratic function the implications of 
multiconvexity are clarified by the next lemma 
(Gahinet et al., 1996). 
 
Lemma 1. Consider a scalar quadratic function of 

pR∈θ  
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  (16) 
and assume that ( ).f  is multiconvex, that is 
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∂
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i

f ω
θ
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Then ( ).f  is negative in the uncertain box (12) if and 
only if it takes negative values at the corners of (11); 
that is, if and only if ( ) 0<γf  for all γ  in the vertex 
set Γ  given by (12). □ 
 
The following new performance index is associated 
with the system (1)  
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where 0≥= TQQ , 0≥= TSS , 0>= TRR  are 
matrices of compatible dimensions. 
 
The problem studied in this paper can be formulated 
as follows: For a continuous time system described 
by (1) design a static output feedback controller with 
the gain matrix F and the control algorithm (3) such 
that the closed loop system (4) is affine quadratic 
stable with guaranteed cost. 
 
Definition 2. Consider the system (1). If there exist a 
control law *u  and a positive scalar *J  such that the 
closed loop system (4) is stable and the closed loop 
value cost function (18) satisfies *JJ ≤ , then *J  is 
said to be the guaranteed cost and *u  is said to be 
the guaranteed cost control law for the system (1). □ 

 
 

3. MAIN RESULTS 
 

In this section we present a new procedure to design 
a static output feedback controller for affine  
 



     

 
continuous time linear systems (1), which ensures the 
guaranteed cost and affine quadratic stability of the 
closed loop system. The following theorem is one of 
the main results. 
 
Theorem 2. Consider the system (1) and the 
Lyapunov function ( ) ( ) ( ) ( ) 0>= txPtxV T θθ , ( )θP  
described by (8). The following statements are 
equivalent: 

• There exist matrices 0≥= TQQ , 0≥= TSS ,  

0>= TRR  and a matrix F, such that system 
(1) is static output feedback affine quadratic 
stabilizable (AQS) with the guaranteed cost 
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where ( ) ( ) ( )FCBAAc θθθ += . 
 

• There exist p+1 symmetric matrices 
pPPP ,,, 10 K  that ( ) 0>θP , symmetric 

matrices 0≥= TQQ , 0≥= TSS , 

0>= TRR  and matrices F, 1N  and 2N  such 
that the following inequality holds 
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where 

( ) ( ) ( )θθθ
.

111 PRFCFCQNAAN TTT
cc
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• There exist p+1 symmetric matrices 
pPPP ,,, 10 K  that ( ) 0>θP , symmetric 

matrices 0≥= TQQ , 0≥= TSS , 

0>= TRR  and matrices F, 1N  of compatible 
dimensions such that the following two 
inequalities hold 
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corresponding to i-th vertex.   □ 

 
Proof. (Sketch) 
Due to Lemma 1 and using the Elimination Lemma 
(Skelton et al., 1997) to eliminate the matrix 2N  
from (20), the inequalities (21) and (22) are obtained 
which proves that the third and second statements are 
equivalent. The sufficiency of second to first 
statement, will be prove in the next. Let (20) holds. If 
one left multiplies (20) by the matrix ( )[ ]θT

cAI  and 
right multiplies by its transpose (Geromel et al., 
1998) the following inequality is obtained 
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Due to Definition 1 and (23) 
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Therefore the closed loop system is asymptotically 
stable. Furthermore, by integrating both sides of (24) 
from 0 to T and using the initial conditions 0x , we 
obtain 
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As the closed loop system is asymptotically stable, 
with ∞→T  
 
 ( ) ( ) ( ) 0)( →= TxPTxTV T θ  (26) 
 
Hence, we get the inequality (19), which proves the 
sufficiency statement for the one. □ 
 
In the Theorem 2 the matrix inequalities (21) and 
(22) are nonconvex. There are following possible 
approaches to solve this nonconvex problem in a 
computationally efficient way using the linearization 
(Han and Skelton, 2003) and the convexifying 
algorithm (de Oliveira et al., 2000). We use both 
algorithms. A convexifying algorithm requires a 
convexifying potential function. There can exist 
many candidates for the convexifying potential 
function for a given nonconvex matrix inequality. 
The following theorem is the next main result 
presenting the new convexification functions. 
 
Theorem 3. Let a symmetric, positive definite matrix 

nnX ×∈ R  is given. Then the conditions a) and b) in 
each of the following cases 1. - 4. are equivalent: 
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where ( ) ( ) QAPPAL vi
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the following equation is a congruence 
transformation (Ayres, 1962) for the matrix on the 
left hand side of inequality (28a). If we left multiply 
the matrix (28a) with matrix in (30) and right 
multiply by its transpose we obtain  
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which is the inequality (28b). Similarly other cases 
can be proven. □ 
 
 

4. EXAMPLES 
 
Example 1 has been borrowed from (Geromel et al., 
1996) to demonstrate the use of algorithm given by 
(21) and (22) for the affine controller design using 
the linearization approach (PEAU-AQ_lin) and the 
new convexification function (PEAU-AQ_con). To 
investigate the influence of the new guaranteed cost 
function (18) on closed-loop eigenvalues for the 
above control design methods are depicted in Fig. 1. 
Increasing the entries of the weighting matrix S 
degrades the robustness margin but improves the 
performance.  
 
Example 2. Assume the affine model (1) modified so 
that all uncertainties in (1) are non-dimensional and 
normalized so that 11 1 ≤≤− θ , pi ,...,1=  while 
matrices pkAck ,...,0, =  in (4) are constant. The  

 

 
 
Fig. 1. Results in terms of maximal closed-loop 

eigenvalue for affine robust controller design in 
dependence on entries of weighting matrix S 
in guaranteed cost function. 
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Fig. 2. Results of robust stability evaluation in terms 
of rating (“the lower value –the better method”). 
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Fig. 3. Results of robust controller design method 
evaluating in terms of mθ  (“the higher value-the 
better method”).  

 
matrices NiBA vivi ,...,1,0,, =  are obtained 
considering pii ,...,1,1 =±=θ . The following test 
has been applied to 50 stable affine systems (1) 
generated for 1) 2=p  and ckA  of the size 3=n ; 2) 

3=p  and 3=n . In each example, the maximum 
value of the uncertainty parameter mθ  has been  
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evaluated for the following affine controller design 
methods: 
- AQ - based on (Gahinet et al., 1996) using 

linearization approach (Han and Skelton, 2003); 
- PEAU-AQ_lin - based on (Peaucelle et al., 2000) 

using linearization approach (Han and Skelton, 
2003); 

- PEAU-AQ_con - based on (Peaucelle et al., 
2000) using new convexification function (27a); 

- PEAU - the parameter dependent Lyapunov 
function robust controller design method based 
on (Peaucelle et al., 2000) using linearization 
approach (Han and Skelton, 2003). 

The obtained results have been evaluated as follows: 
1. All methods have been applied to each example, 

ranged with respect to the maximum value of 
uncertainty parameter 501, ,...,imi =θ  and 
evaluated in terms of points assigned according to 
the rating, (i.e. the highest value of miθ  - best 
rating = 1 point, … etc), i.e. the fewer points, the 
better rating of the respective method (in Fig. 2). 

2. For each method, the mean value meθ  of all 
maximum uncertainty parameters miθ  achieved 

has been computed ( ) 50/50
1∑ == i mime θθ  and the 

methods were ranged according to decreasing 
values of meθ . Hence, in this case, the higher 
value of meθ , the better rating of the respective 
method (in Fig. 3). 

 
 

5. CONCLUSION 
 
In this paper, we have proposed a new method for 
designing affine robust controllers with output 
feedback via LMI approach, which guarantees the 
value of new cost function. The design procedure is 
based on the robust stability analysis results, 
modified for the affine robust controller design and 
belonging to BMI problems. We have reduced the 
BMI problem to an LMI one using the linearization 
approach and the new convexification function. The 
results obtained by a thorough numerical verification 
on examples show the effectiveness of the proposed 
methods. 
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