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1 INTRODUCTION

During the last decades robustness has been recognized as a key issue in the analysis and design
of control systems. The history of robust control design based on small-gain-like robustness condition
started developing with the pioneering work of Zames where robust control design problem has been
formulated as an optimization problem. Only at the end of the 1980’s was found a practical solution to
this problem. It is worth to mention some algebraic approaches which followed the seminal works of
[KHARITONOV, 1979], [BHATTACHARYYA, 1995] and [BARLET, 1988].
In this paper we focus our attention on two robust design problem. First the problem of robust stabiliza-
tion of an uncertain single input-single output (SISO) plant described by the transfer function with linear
or multilinear interval systems is considered. Multiple-input-multiple output (MIMO) systems usually
arise as an interconnection of a £nite number of subsystems. In case of such systems practical reasons
often make restrictions on controller structure necessary or reasonable. The controller split into sev-
eral local feedbacks becomes a decentralized controller. With the come up of robust frequency domain
approach in the 80’s several practice oriented techniques were developed, see [SKOGESTAD,1996],
[KOZAKOVA, 2003]. The decentralized controller design comprises two steps: 1. selection of control
con£guration, 2. design of local controllers. In the second part of this paper we deal with the Step
2. The independent design approach has been adopted. In the independent design used in sequel local
controllers are designed without considering interactions with other subsystems. In this paper a novel
design technique is proposed to guarantee a required performance of the full system by applying the
independent design to the equivalent subsystems.

2 PRELIMINARIES AND MODEL UNCERTAINTIES

Consider a closed-loop system comprising the transfer function matrix of the plant G(s) ∈
Rm×m and the controller R(s) ∈ Rm×m in the standard feedback con£guration, Fig.1

where w, u, y, e are respectively vectors of reference, control input, output and control error of compati-
ble dimensions.
The problem addressed in this paper is the design of a robust decentralized controller

R(s) = diag{Rii(s)}m×m (1)
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Figure 1 – Standard feedback con£guration

that guarantees closed-loop stability and performance over the entire operating range of the controlled
plant G(s).
Let the plant be given by a set of N transfer function matrices identi£ed in different working points

Gk(s) = {Gk
ij(s)}m×m, k = 1, 2, ...N

with

Gk
ij(s) =

yk
i (s)

uk
j (s)

i, j = 1, 2, ...,m

where yk
i (s) is the i-th output and uk

j (s) is the j-th plant input in the k th experiment.
Uncertainty associated with a real system model can be described in various ways. There are following
types of uncertainty models encountered in the literature:
structured uncertainty (parametric uncertainty: interval model, af£ne model, multilinear and nonlinear ;
dynamic uncertainty with known structure), and
unstructured uncertainty (additive, multiplicative and inverse uncertainty models which include paramet-
ric and dynamic uncertainty with unknown structure).
In practice, at a particular frequency the transfer function magnitude and phase are supposed to lie within
a disc-shaped region around the nominal transfer function GN (s). Over a given frequency range, these
disc-shaped regions can be generated by the following forms: additive (2), multiplicative input (3) and
multiplicative output (4) uncertainties, as well as by the inverse forms [SKOGESTAD, 1996]. In the se-
quel just the £rst three uncertainty forms will be considered, respectively to describe the uncertain plant
G(s).

Πa : G(s) = GN (s) + la(s)∆(s) la(s) = max
k

σM [G
k(s)−GN (s)] (2)

Πi : G(s) = GN (s)[I + li(s)∆(s)] li(s) = max
k

σM{GN (s)
−1[Gk(s)−GN (s)]} (3)

Πo : G(s) = [I + lo(s)∆(s)]GN (s) lo(s) = max
k

σM{[G
k(s)−GN (s)]GN (s)

−1} (4)

where σM (.) is the maximum singular value of the corresponding matrix;∆(s) is the uncertainty matrix
that satis£es

∆(s)T∆(s) ≤ I (5)
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For the SISO case, m = 1, the multiplicative input and output uncertainties equal.In the frequency
domain, uncertain SISO systems can be described using either of the above uncertainty types as well as
the following ones :
-linear interval,(linear) af£ne, multilinear and nonlinear uncertainties.
Consider a SISO plant (m = 1) and a controller with transfer functions in the following forms

G(s) =
P1(s)

P2(s)
R(s) =

R1(s)

R2(s)
(6)

where Pi(s), i = 1, 2 are a linear interval polynomials

Pi(s) = poi + p1is+ ...+ pniis
ni (7)

with

pji ∈< pji, pji > i = 1, 2; j = 1, 2, ..., ni

Let us de£ne the corresponding parameter uncertainty box

Qi = {pi : pji ≤ pji ≤ pji, i = 1, 2; j = 0, 1, 2, ..., ni} (8)

The global parameter uncertainty box is then

Q = Q1 ×Q2

The following assumptions about the linear interval polynomials are considered:

• Elements of pi ∈ Qi, i = 1, 2 are perturbed independently of each other. Equivalently, Q is
(n1 + n2) axis parallel rectangular box.

• Characteristic polynomials of the plant and the controller are of the same degree.

According to [BHATTACHARYYA, 1995] the closed-loop stability problem can be solved using the
Generalized Kharitonov Theorem.

Theorem 1
For a given R(s) = [R1(s)R2(s)] of real polymials:

R(s) stabilizes the linear interval polynomials P (s) = [P1(s)P2(s)] for all p ∈ Q if and only if the
controller stabilizes the extremal transfer function

GE(s) = {
K1(s)

S2(s)

⋃ S1(s)

K2(s)
} (9)

Moreover, if the controller polynomials Ri(s), i = 1, 2 are of the form

Ri(s) = sti(ais+ bi)Ui(s)Zi(s) (10)
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then it is suf£cient if the controller R(s) stabilizes the Kharitonov transfer function

GK(s) =
K1(s)

K2(s)
(11)

where Ki(s) = {Ki(s)
1,Ki(s)

2,Ki(s)
3,Ki(s)

4} stand for Kharitonov polynomials correspond-
ing to each Pi(s) and

Si(s) = {[Ki(s)
1,Ki(s)

2], [Ki(s)
1,Ki(s)

3], [Ki(s)
2,Ki(s)

4], [Ki(s)
3,Ki(s)

4]} (12)

stand for Kharitonov segments for corresponding Pi(s);
Ui(s) is anti-Hurwitz polynomial;
Zi(s) is an even or odd polynomial;
ai, bi are positive numbers and ti ≥ 0 is an integer.

Note that

Si(s)
1 = λKi(s)

1 + (1− λ)Ki(s)
2 λ ∈< 0 1 > .

Let the plant transfer function of G(s) be written in the following af£ne form

G(s) =
P1(s)

P2(s)
=

P0,1(s) +
∑p

i=1 Pi,1(s)qi

P0,2(s) +
∑p

i=1 Pi,2(s)qi
(13)

where Pj,1(s), Pj,2(s), j = 0, 1, ..., p are real polynomials with constant parameters and the uncertainty
parameter qi is from the interval

qi ∈< qi, qi > i = 1, 2, ..., p

The description (13) represents a polytope of linear systems with the vertices

Gvj(s) =
Pv1,j(s)

Pv2,j(s)
j = 1, 2, ..., N ;N = 2p (14)

computed for different variables qi(s), i = 1, 2, ..., p taking alternatively their maximum qi and mini-
mum values qi. Based on the Edge theorem [BARLETT,1988] the following results can be obtained

Theorem 2
The controller R(s) = [R1(s)R2(s)] with real polynomials stabilizes the af£ne system (13) for all q ∈ Q
if and only if the controller stabilizes the following extremal transfer function

GP (s) =
λPv1,i + (1− λ)Pv1,j

λPv2,i + (1− λ)Pv2,j
λ ∈< 0, 1 > i 6= j, i, j = 1, 2, ..., p2p−1 (15)

Both i and j have to be taken as e vertices numbers of corresponding edges. In general, the sets of
extremal transfer functions (9) and (15) are quite different. Whilst the number of GE(s) is equal to 32,
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the number of GP (s) depends exponentially on the number of uncertain parameters qi.
For the case of multilinear uncertainty consider the following uncertain plant transfer function

G(s) =
P11(s)P12(s)...P1n(s)

P21(s)P22(s)...P2d(s)
(16)

where Pij(s), i = 1, 2; j = 1, 2, ..., n(d) belong to a linear interval polynomial speci£ed as follows

pi,j
k ∈< pi,j

k , pi,j
k >, i = 1, 2; j = 1, 2, ..., n(d), k = 0, 1, ..., nij(dij)

with independently varying parameters.
Let Kij(s) and Sij(s) denote Kharitonov polynomials [KHARITONOV,1979] and Kharitonov segments
of corresponding Pij(s),respectively. The following theorem holds [BHATTACHARYYA, 1995].

Theorem 3
The controller R(s) = [R1(s)R2(s)] stabilizes the multilinear system (16) for the uncertainty box if and
only if the polynomials R(s) stabilizes the following extremal transfer function

ME(s) = {
S11(s)...S1n(s)

K21(s)...K2d(s)

⋃ K11(s)...K1n(s)

S21(s)...S2d(s)
} (17)

For the sake of limited space, other uncertainty types will not be considered here. For more detail see
[BHATTAcharyya, 1995],[GRMAN, 2005].

3 ROBUST CONTROLLER DESIGN

This section deals with the robust controller design for both MIMO and SISO systems using
either of the uncertainty types (2) or (3) or (4). Standard feedback con£guration for the uncertain system
with additive uncertainty is depicted in Fig. 2.

Figure 2 – Standard feedback con£guration with additive uncertainty

The above block diagram can easily be transformed in to the M −∆ structure in Fig.3 [SKOGESTAD,
1996].
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Figure 3 – M −∆ structure of closed-loop system

For different uncertainty types the following results have been obtained

Ma(s) = −[I +R(s)GN (s)]
−1R(s)

Mi(s) = −[I +R(s)GN (s)]
−1R(s)GN (s) ∀s ∈ D (18)

Mo(s) = −GN (s)R(s)[I +GN (s)R(s)]
−1

Robust stability conditions are given in following theorem [SKOGESTAD, 1996].

Theorem 4
Assume that the nominal closed-loop system Mk(s), k = a, i, o is stable and the uncertainties satisfy the
following inequality

0 < lk(s) ≤ lkm(s) k = a, i, o. (19)

Then the M −∆ system is stable for all uncertainty models lk(s), k = a, i, o satisfying (19) if and only
if

σM (Mk(s)) <
1

lk(s)
(20)

The resulting robust decentralized controller design procedure consist of two steps:

• designing a controller R(s) which guarantees stability and performance for nominal plant GN (s)
(nominal stability)

• veri£cation of the robust stability condition (20)

Nominal closed-loop stability under a decentralized controller (GN (s) and R(s)) is guaranteed if and
only if the following conditions are satis£ed [SKOGESTAD, 1996] .

Theorem 5
The feedback system in Fig.1 is stable if and only if

• det(F (s)) 6= 0 ∀s ∈ D

• N [0, det(F (s))] = nl
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where F (s) = I + GN (s)R(s) is the return difference matrix, N [0, det(F (s))] denotes the number of
anticlockwise encirclements of the point [0, 0i] by the Nyquist plot of det(F (s)), nl is the number of
open-loop unstable poles, i.e. of GN (s)R(s), and D = {s = jω : ω ∈ (−∞,∞)}.
Let us factorize det(F (s)) in Theorem 5 as follows

det(F (s)) = det(I +GN (s)R(s)) = det((R(s)−1 +Gd(s) +Gm(s))det(R(s))

det(F (s)) = det(Fo(s))det(R(s)) (21)

where GN (s) = Gd(s) + Gm(s), Gd(s) = diag{GN (s)} and Fo(s) = R(s)−1 + Gd(s) + Gm(s).
Existence of R(s)−1 is implied by the assumption that det(R(s)) 6= 0. Using (21), Theorem 5 reads as
follows.

Corollary 1
Closed-loop system comprising the nominal model GN (s) and the controller R(s) is stable if and only
if

• det(Fo(s)) 6= 0 ∀s ∈ D

• N [0, det(Fo(s))] +N [0, det(R(s))] = nl (22)

If R(s) has no poles in the open R.H.P , N [0, det(R(s))] = 0 and the encirclement condition (22)
reduces to

N [0, det(Fo(s))] = nl (23)

Consider a diagonal matrix P (s) such that the following two corollaries hold.

Corollary 2
Let P (s) = R(s)−1+Gd(s). The nominal closed-loop system is stable if either of the £rst two conditions
and the third condition are met

• det(P (s) +Gm(s)) 6= 0 ∀s ∈ D

• N [0, det(P (s)+Gm(s))] = nm where nm denotes the number of unstable poles of matrix P (s)+
Gm(s)

• either of the matrices Mk(s), k = a, i, o is stable.

For example, for k = a we obtain

Ma(s) = −[P (s) +Gm(s)]
−1 = −

adj[P (s) +Gm(s)]

det(P (s) +Gm(s))

The matrix Ma(s) is stable if and only if the closed-loop characteristic polynomial

pc(s) = det(P (s) +Gm(s))
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has all roots in the left half complex plane.

Remark 1
Corollary 2 implies

• det(P (s) +Gm(s)) = det(P (s))det(I + P (s)−1Gm(s))

Because P (s) is a diagonal matrix numerators of all its entries are to be stable. According to the
small gain theorem the necessary and suf£cient condition for closed-loop stability (if both transfer
function matrices P (s)−1 and Gm(s) are stable) reduces to

||P (s)−1Gm(s)|| < 1⇔ σM (Gm(s)) < σm(P (s)) (24)

Inequality (24) has to be ful£lled for all subsystems.

• In the sequel two methods for selecting the diagonal matrix P (s) are presented. For different
entries of P (s) = diag{Pi(s)}m×m the following approach can be applied. Due to that matrices
P,R,Gd are diagonal the choice of i-th entry Pi(s) of P (s) is following.

Pi(s) = Ri(s)
−1 +Gdi(s) i = 1, 2, ...,m

or

Pi(s) =
Pni(s)

Pdi(s)
=

RdiGddi +GdniRni

RniGddi

Denote

Pni = RdiGddi +GdniRni = RniPni Pdi = RniGddi

From above equation one obtains the characteristic polynomial in the form

1 +Ri(s)
Gdni(s)− Pni(s)

Gddi(s)
= 1 +Ri(s)G

m
di(s) (25)

where the transfer function of i-th modi£ed subsystem is de£ned as follows

Gm
di(s) =

Gdni − Pni

Gddi

(26)

and diagonal transfer function matrix P (s)

P (s) = {
Pni(s)

Gddi(s)
}m×m

where Pni(s) is stable polynomial with corresponding degree such that the conditions of Corollar-
ies 2 and 3 are met.
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Denote the following polynomials as follows (index i is omitted)

pa(s) = RdGdd +RnGdn = ans
n + ...+ a0

pb(s) = RnPn = bms
m + ...+ b0

and

pc(s) = pa(s)− pb(s) = cks
k + ...+ c0 k = m or k = n

The following lemma is important for the next development.

Lemma 1
We are given two stable polynomials pb(s) and pc(s). The polynomial pa(s) will be stable if one of the
following condition is met:

• ϕ(ω) = |arg(pc)− arg(pb)| < π ∀ω ∈ Ω

where

Ω = {ω : ω ∈< 0 ∞)}

• If for some £nite number of ωi i = 1, 2, ..., I

ϕ(ωi) = |arg(pc)− arg(pb)| = π pc(ωi) 6= −pb(ωi)

and for ω 6= ωi, ϕ(ω) < π.

Proof. From Zeros exclusion principle [BHATTACHARYYA, 1995] the polynomial pa(s) will be on the
boundary of stability if and only if for some ωi ∈ Ω and stable polynomials pc(s) and pb(s)

pa(ωi) = 0 → pc(ωi) = −pb(ωi)

Because for ϕ(ω) = 0 ∀ω ∈ Ω the polynomial pa(s) is stable, pa(s) will be stable if

ϕ(ω) = |arg(pc)− arg(pb)| < π ∀ω ∈ Ω

If for some £nite number of ωi i = 1, 2, ..., I

ϕ(ωi) = |arg(pc)− arg(pb)| = π pc(ωi) 6= −pb(ωi)

and for ω 6= ωi, ϕ(ω) < π the polynomial pa(s) is stable.

Remark
From the Lemma 1 and the Mikhailov test stability, see for example [ACKERMAN, 1997] results that
for ensure ful£lment of the stability conditions of Lemma 1 the following is recommended:

• |degree(pc(s))− degree(pb(s))| ≤ 2
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• stable roots of pc(s) should be close to stable parts of roots of Gdd.

• the controller transfer function numerator has to be a stable polynomial.

Corollary 3
The closed-loop system in Fig.3 is robustly stable if for either of the uncertainty types (2),(3) or (4)
satisfying (19) and conditions of Corollary 2 with the corresponding below-given inequalities are met:

• for the additive uncertainty

σM ([P (s) +Gm(s)]
−1) <

1

|la(s)|

• for the input multiplicative uncertainty

σM ([P (s) +Gm(s)]
−1GN (s)) <

1

|li(s)|
(27)

• for the output multiplicative uncertainty

σM (GN (s)[P (s) +Gm(s)]
−1) <

1

|lo(s)|

For identical entries of P (s) = p(s)I the following approach has been developed. From Corollary 2
results

I +R(s)[Gd(s)− P (s)] = 0 (28)

which on the subsystem level represents m characteristic polynomials for individual equivalent subsys-
tems Geq

i (s)

Geq
i = Gi(s)− pi(s) i = 1, 2, ...,m (29)

and controllers Ri(s).
Recall that the characteristic function of Gm(s) are de£ned as follows

det(gi(s)I −Gm(s)) = 0 i = 1, 2, ...,m

If we consider identical entries in the diagonal matrix P (s) = p(s)I , and substitute into the £rst expres-
sion of Corollary 2 and equate it to zero

det(p(s)I +Gm(s)) = 0 (30)

we actually obtain a relation for calculating p(s) as a characteristic function of [−Gm(s)]
If for a £xed l ∈ {1, 2, ...,m} p(s) is chosen as p(s) = −g l(s) then

det(Fo(s)) =
m
∏

i=1

[p(s) + gi(s)] = 0 (31)
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In that case according to respect to Corollary 2 the closed-loop system has located poles in the left half
plane and some on the imaginary axis. Stability conditions of complex system for the case of identical
entries of P (s) are given in the following Theorem [Kozáková, 2003].

Theorem 6
The closed-loop system in Fig.1 comprising the system GN (s) and a not unstable decentralized con-
troller R(s) is stable with a degree of stability α > 0 if and only if for a selected characteristic function
of −Gm(s− α), p(s− α) = −gl(s− α) there exists a constant αm such that for all α and any α1

0 ≤ α1 < α ≤ αm

and ∀s ∈ D the following conditions hold

• det(Fo(s)) =
∏m

i=1[p(s− α) + gi(s− α1)] 6= 0

•
m

∑

i=1

N [0,meq
il (s)] = nm (32)

where

meq
il = [p(s− α) + gi(s− α1)] i = 1, 2, ...,m

However, if αm → 0 and for some s ∈ D happens that

det(Fo(s)) =
m
∏

i=1

[p(s− α) + gi(s− α1)] = 0

i.e. if the plot of p(s−α) and any characteristic locus gi(s−α1), i = 1, 2, ...,m happen to cross, condi-
tions of Theorem 6 are not met and the closed-loop stability cannot be achieved using the decentralized
controller R(s). The above partial results are summarized in the following de£nition and theorem.

De£nition 1
For l ∈ {1, 2, ...,m} and α > α1 ≥ 0 the characteristic function gl(s − α) of [−Gm(s − α)] is called
a stable characteristic function if it satis£es Theorem 6. The set of all stable characteristic functions is
denoted PS .

Theorem 7
The closed-loop system in Fig.1 comprising the systemGN (s) and a not unstable decentralized controller
R(s) is stable with a degree of stability α > 0 if and only if :

• p(s− α) = −gl(s− α) ∈ PS ∀s ∈ D for some £xed l ∈ {1, 2, ...,m} and α > α1 ≥ 0

• all equivalent characteristic polynomials (28) are stable with the roots satisfying

Res ≤ −α
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4 EXAMPLES

In the £rst example the Magnetic levitation model has been considered. The problem is to design
a robust PID controller which will guarantee stability and a desired performance in terms of phase margin
over the whole operation range of the plant. The magnetic levitation model is described in [HUMUSOFT,
1996-2002] and the linearized model is given as follows

ẋ = Ax+Bu y = Cx

where xT = [∆x ∆x1] and

A =

[

0 1

−
k2

DA
kf U2

MUD

mk(xoo−xo)3
−

kfv

mk

]

B =

[

0

−
2k2

DA
kf UMUD

mk(xoo−xo)2

]

C = [kADkx 0]

The corresponding transfer function

y(s) = C(sI −A)−1Bu(s)→ G(s) =
y(s)

u(s)
=

km

as2 + bs− 1

For more detail see [HUMUSOFT, 1996-2002].
The linear interval model of the magnetic levitation is given as follows

km ∈< 2.4 6.8 > a ∈< 1.34 4.025 > ∗10−4 b ∈< 1.7975 5.3895 > ∗10−6

Let the required of closed-loop performance be given in terms of MT = 1.6, MS = 2 and a phase margin
more than PM = 72 degrees. Using the extremal transfer function (9)and the Bode approach the robust
PID controller transfer function has been obtained

R(s) =
.02748s2 + 1.278s+ 8.162

s

The Bode diagram for the worst case open-loop system is in Fig.4

Nyquist plot with the circle de£ning the prohibited area are in Fig.5

The worst case closed loop step response is given in Fig.6

Applying Corollary 2 and Remark 1 in the robust PID controller design for the above example have
obtained the following results. The additive uncertainty |la(s)| versus omega plot is depicted in the Fig.7
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Figure 8 – Veri£cation of the robust stability condition

Taking Pn(s) = (s+60)(s+5)(s+2) and applying the D-partition approach the following PID controller
is obtained

kp + ki/s+ kds = 1.5 + 3/s+ 0.03s

Veri£cation of the robust stability condition (27) is in the Fig.8; the D-curve for choosing the controller
gain kd is the Fig.9.

Closed-loop step responses in the two plant working points are in Fig.10 and Fig.11
1st working point transfer function,Fig.10:

G1(s) =
6.8

0.0004025s2 + 5.389−6s− 1

second working point transfer function, Fig.11:

G2(s) =
2.4

0.000134s2 + 1.797−6s− 1
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Figure 10 – Closed-loop step response in the 1st working point
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Figure 11 – Closed-loop step response in the 2nd working point

The second example deals with the glass tube drawing plant where the glass metal ¤owing out from
feeder is wrapping around a rotating cylindrical blowpipe. At its lower end, a tube is continuously being
drawn using a drawing machine situated at the end of the line. Forming air is blown into the tube under
a certain pressure. The produced glass tube has to have required parameters: outer diameter and wall
thickness; these quantities are manipulated through the pressure of the forming air and the drawing speed
of the drawing machine. Assume pairing of the input and output variables de£ning individual subsystems
to be completed as follows:
u1- blowing air pressure
u2 -speed of drawing
y1 -outside diameter of the tube and
y2 -tube wall thickness.
The process was linearized in several operating points. The below transfer function matrix corresponds
to one chosen operating point.

G(s) =

[

187e−.5s

s2+10.6s+17.2
5.45(s−4.5)

s2+11.85s+27.95
25

s2+8.84s+19.52
57.5

s2+13.42s+39.76

]

The objective is to design two local decentralized PID controllers guaranteeing that the pre-set output
parameters (wall thickness, outside tube diameter) are maintained and the whole process is robustly stable
within 15 percent of plant parameter changes. The design procedure is as follows: The characteristic loci
(CL) of Gm(s − α) for α = {0, .4} are plotted in Fig.12 and Fig.13. One of them has been chosen
to generate P(s). Consider the £rst characteristic locus g1(s − α) and specify p(s) to be p(s) =
−g1(s − 0.4) ; the corresponding equivalent characteristic loci meq

i1 = [g1(s − .4) − gi(s), i = 1, 2
are plotted in Fig.14. According to De£nition 1 g1(s − .4) is a stable characteristic locus. Next, the
D-partition method has been applied to both equivalent subsystems obtained by modifying the Nyquist
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Figure 12 – Characteristic locus g1(s− α) of Gm(s− α), α = {0, 0.4}
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Figure 13 – Characteristic locus g2(s− α) of Gm(s− α), α = {0, 0.4}
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Figure 14 – Equivalent characteristic loci meq
i1 , i = 1, 2

plots of decoupled subsystems through the chosen characteristic locus g1(s-.4). Corresponding D-plots
in the (kp = r0, ki = r1) plane for the £rst and second subsystems are in Fig.15 and Fig 16, respectively
.

-

0.05

0 0.05 0.1 0.15 0.2

0

0.0

5

0.1

0.1

5

0.2

0.2

5

r0

r
1

Figure 15 – D-partition of the (r0, r1) plane 1st subsystem
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Figure 16 – D-partition of the (r0, r1) plane 2nd subsystem

From the boundary plots of the stable controller parameter regions with degree of stability α = .4
the following PI controller parameters have been chosen

R1(s) = .047 +
.0564

s
R2(s) = 0.3999 +

.7041

s

The closed-loop poles are as follows

eigCL = {−.4232± .1632i;−.8181;−1, 277;−1.3803;

−6.4557± 3.55i;−7.3585;−10.7034± 5.1116i;−14.4123}

The above designed local PI controllers guarantee stability of the full nominal closed-loop system with
the achieved degree of stability α = 0.4232 . Assume that all parameters of the plant transfer func-
tion vary within ±15 percent around their nominal value;thus the uncertain system can be described by
3 transfer function matrices corresponding to the nominal model, the +15 percent model and the -15
percent model. After evaluating the plant uncertainty using (2), (3), (4) the three plots in Fig.17 have
been obtained. To verify robust closed-loop stability under the decentralized controller designed for the
nominal model (20) has been modi£ed to give

lk(s)σM (Mk(s)) < 1 k = a, i, o (33)

Fig.18 shows the result of the robust stability test: as all plots (either of them one would suf£ce) lie below
1, the closed-loop system is robustly stable for the 15 percent changes in all plant parameters.

5 CONCLUSION

In this paper a novel design technique is proposed to guarantee a required performance of the
full MIMO system by applying the independent design to the equivalent subsystems.
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