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Abstract: The paper addresses the problem output feedback controller design for switched linear 
continuous-time systems by multiple Lyapunov function quadratic stability. The method also 
determines a minimum dwell time. Numerical examples are given to illustrate the design 
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1 INTRODUCTION  

 Switched systems have attracted considerable attention of many researchers in the world 
during the past decades. A switched system has hybrid dynamic features comprising a family of 
subsystems described by continuous-time or discrete-time dynamics, and a rule specifying the 
switching among them. The studies on such systems are motivated by the fact that many physical 
systems and man-made systems are often modelled based on such a framework exhibiting switching 
features [Imura, 2003], [Johansson, 1998], [Rantzer, 2000]. Publications on the general topic and 
recent research progress in the field of switched systems are e.g. [DeCarlo, 2000], [Liberzon, 1999], 
[Sun, 2005]. In the last years, a hot topic is to find less conservative conditions to guarantee the 
stability of switched systems under arbitrary switching signals [Branicky, 1998], [Mignone, 2000], 
[Ye, 1998]. 
 In this paper, the problem of switched linear continuous-time systems control using the 
multiple Lyapunov function is considered. 
   
2 PROBLEM FORMULATION AND PRELIMINARIES  

 This paper is concerned with continuous-time switched linear systems of the following general 
form 
  
 ( ) ( ) ( )txAtx tcσ=& , ( ) 00 xx =  (1) 
 
defined for all 0≥t  where ( ) nR∈tx  is the state, ( )tσ  is the switching rule and 0x  is the initial 
condition. We consider the class of switched systems characterized by the fact that for each 0≥t , the 
switching rule is such that 
 
 ( ) { }cNcctc AAAA ,,, 21 K∈σ   (2) 
 
The model (2) naturally imposes a discontinuity on ( )tcA σ  since this matrix must jump instantaneously 
from iA  to jA  for some Nji ,,1K=≠  once switching occurs. In other words, ( )tcA σ  is constrained 
to jump among the N vertices of the matrix polytope { }cNcc AAA ,,, 21 K . 
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Lemma 1.  (Quadratic stability) 

A switched system (1) is quadratically stable if and only if there exist a positive definite matrix 
0>= TPP  such that 

 
 0<+ ci

T
ci PAPA  Ni ,,2,1 K=   (3) 

    � 
 
 Unfortunately this approach generally provides quite conservative results. To reduce the 
conservatism of (3) the multiple Lyapunov function has been proposed [Geromel, 2005]. When ( )tσ  
is a piecewise constant signal, the stability conditions can be obtained using a family of symmetric and 
positive definite matrices { }NPP ,,1 K  each of them associated to each matrix of the set  { }cNc AA ,,1 K . 
If the Lyapunov function is non-increasing in time with respect to ( )tσ  at every switching time, then 
the global system is stable. 
 
Lemma 2.   

Assume that, for some 0>T , there exists a collection of positive definite matrices { }NPP ,,1 K  of 
compatible dimensions such that  
  
 0<+ ciii

T
ci APPA  Ni ,,1K=∀   (4) 

 

 0<− i
TA

j
TA PePe ci

T
ci  Nji ,,1K=≠∀   (5) 

 
where T is dwell-time of the switched system; kt and 1+kt  are successive switching times satisfying 

Ttt kk ≥−+1  for all k. The time switching control 
 
 ( ) { }Nit ,,1K∈=σ  [ )1, +∈ kk ttt   (6) 
 
makes the equilibrium solution 0=x  of (1) globally asymptotically stable. � 
 
3 CONTROL DESIGN 

 Assume the open loop switched system (1) is as follows 
  

 
( ) ( ) ( )
( ) ( ) NitxCty

tuBtxAtx

i

ii

,,2,1 K

&

==
+=

 (7) 

 
The problem studied in this paper can be formulated as follows: For switched systems described by (7) 
a static output feedback controller is to be designed with the gain matrix F and control algorithm  
 
 ( ) ( ) ( )txFCtFytu i==   (8) 
 
such that the closed loop system 
 
 ( ) ( ) ( ) ( )txAtxFCBAtx ciiii =+=&  (9) 
 
is stable with respect to multiple Lyapunov function and guaranteed cost. 
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Definition 1. 

Consider the switched system (7) and the control algorithm (8), If there exists a control law u* and a 
positive scalar *J such that the closed loop system (9) is stable and the cost function 
  

 ( ) ( ) ( ) ( )[ ]dttRututQxtxJ TT∫
∞

+=
0

 (10) 

 
satisfies *JJ ≤  for Ni ,,2,1 K=  then *J  is said to be guaranteed cost and u* is said to be the 
guaranteed cost control law for system (7). � 
 
Lemma 3. 

For the switched system (7) the control algorithm (8) ensures the guaranteed cost if the following two 
conditions hold 
 

 
NjiPePe

NiRFCFCQAPPA

i
TA

j
TA

TT
ciii

T
ci

ci
T

ci ,,10
,,10
K

K

=≠∀<−

=∀<+++
 (11)  

  � 
 
 The above two inequalities are the basis for the design procedure developed below. 
Inequalities (11) can be extended and modified to the form 
 
 ( ) ( ) 0<+++++ RFCFCQFCBAPPFCBA TT

iiii
T

ii , Ni ,,2,1 K=  (12) 

 ( ) ( ) 0<−++
i

TFCBA
j

TFCBA PePe ii
T

ii , Nji ,,2,1 K=≠  (13) 
 
In the system of inequalities (12) and (13) the positive definite matrix Pi and the feedback gain F are 
unknown. The N inequalities (12) can be modified to the following quadratic matrix inequalities 
(QMIs) 
 

( ) ( ) 0111 <+++−++ −−−
i

T
i

T
i

T
ii

T
iiiiii

T
i PBRFCRPBRFCPBRBPQAPPA , (14) 

 
If it is possible to find Pi > 0 and F satisfying the QMI in (14), then a stabilizing static output feedback 
gain exists.  

Due to the negative sign in the i
T
iii PBRBP 1−−  term, LMI cannot be applied to (14). To 

accommodate the i
T
iii PBRBP 1−−  term, we introduce an additional design variable X. By linearization 

[Han, 2003] using the inequality ( ) ( ) 01 ≥−− −
ii

T
ii

T
ii PXBRBPX  for any X and P of the same 

dimension, we obtain 
 

i
T
ii

T
ii

T
ii

T
ii

T
ii

T
ii

T
ii

T
i PBRBPXBRBXXBRBPPBRBX 1111 −−−− ≤−+ , (15) 

 
with equality sign for Xi = Pi. By combining (15) and (14) we obtain a sufficient condition for the 
existence of static output feedback matrix F given by 
 

( ) ( ) 011

111

<+++

++−−++

−−

−−−

i
T
i

T
i

T
i

i
T
iiii

T
iiii

T
iiiiii

T
i

PBRFCRPBRFC

XBRBXXBRBPPBRBXQAPPA
   for Ni ,,2,1 K=  (16) 
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Using the Schur complement, inequalities (16) for fixed matrix X are equivalent to the following LMIs 
  

 ( ) 0
11

1111
<

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+
++−−++

−−

−−−−

RPBRFC
PBRFCXBRBXXBRBPPBRBXQAPPA

i
T
i

T
i

T
ii

T
iiii

T
iiii

T
iiiiii

T
i  (17) 

 
These LMIs can be solved iteratively. The LMI problem is convex and can be efficiently solved if a 
feasible solution exists. 
 
Algorithm 

1. Select Q = QT > 0, R = RT > 0, F0 = 0, T  > 0 and choose the initial value of X , e.g. from the 
following algebraic Riccati equation 

 
01 =+−+ − QPBRBPAPPA i

T
iiiiii

T
i ,  Ni ,,2,1 K=  (18)

  
 Set  k = 1 and Xi = Pi. 

2. For the matrices Xi are known, compute Fk and Pi > 0 using the matrix inequalities (17). 
3. For the known Fk-1 compute Pi and Pj using the matrix inequalities (13). 
4. Compute ii PXer −= . 

 If er ≤ tolerance stop, else k = k + 1, Xi = Pi and go to Step 2. 
 
If the algorithm fails to arrive at a stabilizing solution, we may select another Q and run the LMI 
algorithm again. 
 The minimum value of the dwell time T can be calculated with no big difficulty from the 
optimal solution of the optimization problem 
 
 { })5(),4(:min

0,,0,0 1

T
NPPT >>> K

 (19) 

 
Which, for each fixed 0>T , reduces to a convex programming problem with LMIs. 
 
4 EXAMPLES 

 Example 1. The problem is to design two PI controllers for switched linear continuous-time 
MIMO system by multiple Lyapunov function. The system model is given by (9), where .3,2,1=i  
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The decentralized control structure for the two PI controllers can be obtained by the choice of 

the static output feedback gain matrix F structure. It is given as follows 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

2422

1311

00
00

ff
ff

F  

 
The static output feedback gain matrices F for 100=ρ , 1=r , rIR = , 001.0=q , qIQ =  and dwell 
time 3=T  are as follows 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

0.949-07.287-0
00.379-03.562-

F  

 
Maximal closed loop eigenvalue is 0924.0− . 
 
 Example 2. Consider the switched MIMO system from Example 1. We have calculated the 
minimum dwell time approach to zero.  
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5 CONCLUSION 

 In this paper, we have proposed a procedure to design switched linear continuous-time system 
control using multiple Lyapunov function. The design procedure is based on the stability analysis 
results of switched systems [Geromel, 2005] belonging to BMI problems. We have reduced the BMI 
problem to an LMI one using the linearization approach. The results obtained by verification on 
examples show effectiveness of the proposed method. 
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