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ROBUST CONTROL OF LINEAR
SYSTEMS IN THE FREQUENCY DOMAIN

Vojtech Veselý — Alena Kozáková — Lubomı́r Grman
∗

In this paper a novel design technique is proposed to guarantee a required performance of the full system by applying

the independent design to equivalent subsystems.

K e y w o r d s:

1 INTRODUCTION

During the last decades robustness has been recog-
nized as a key issue in the analysis and design of control
systems. The history of robust control design based on
small-gain-like robustness condition started developing
with the pioneering work of Zames where robust control
design problem has been formulated as an optimization
problem. Only at the end of the 1980’s was found a prac-
tical solution to this problem. It is worth to mention some
algebraic approaches which followed the seminal works of
Kharitonov [khar], Bhattacharyya et al [bhata] and Bar-
let et al [barlet].

In this paper we focus our attention on two robust
design problem. First the problem of robust stabiliza-
tion of an uncertain single input-single output (SISO)
plant described by the transfer function with linear or
multilinear interval systems is considered. Multiple-input-
multiple output (MIMO) systems usually arise as an in-
terconnection of a finite number of subsystems. In case
of such systems practical reasons often make restrictions
on controller structure necessary or reasonable. The con-
troller split into several local feedbacks becomes a decen-
tralized controller. With the come up of robust frequency
domain approach in the 80’s several practice oriented
techniques were developed, see [sko],[kozv]. The decen-
tralized controller design comprises two steps: 1. selection
of control configuration, 2. design of local controllers. In
the second part of this paper we deal with the Step 2.
The independent design approach has been adopted. In
the independent design used in sequel local controllers
are designed without considering interactions with other
subsystems. In this paper a novel design technique is pro-
posed to guarantee a required performance of the full sys-
tem by applying the independent design to the equivalent
subsystems.

Preliminaries and Model Uncertainties

Consider a closed-loop system comprising the trans-
fer function matrix of the plant G(s) ∈ Rm×m and the

controller R(s) ∈ Rm×m in the standard feedback con-
figuration,

2 PRELIMINARIES AND

MODEL UNCERTAINTIES

Consider a closed-loop system comprising the trans-
fer function matrix of the plant G(s) ∈ Rm×m and the
controller R(s) ∈ Rm×m in the standard feedback config-
uration, Fig. 1, where w, u, y, e are respectively vectors
of reference, control input, output and control error of
compatible dimensions.

G(s)
w e y

-

u
R(s)

Fig. 1. Standard feedback configuration

The problem addressed in this paper is the design of
a robust decentralized controller

R(s) = diag{Rii(s)}m×m (1)

that guarantees closed-loop stability and performance
over the entire operating range of the controlled plant
G(s).

Let the plant be given by a set of N transfer function
matrices identified in different working points

Gk(s) = {Gk
ij(s)}m×m, k = 1, 2, ...N

with Gk
ij(s) =

yk
i (s)

uk
j (s)

i, j = 1, 2, ...,m ,

where yk
i (s) is the i-th output and uk

j (s) is the j-th plant

input in the k th experiment.

Uncertainty associated with a real system model can
be described in various ways. There are following types
of uncertainty models encountered in the literature: (i)
structured uncertainty (parametric uncertainty: interval
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model, affine model, multilinear and nonlinear ; dynamic
uncertainty with known structure), and (ii) unstructured
uncertainty (additive, multiplicative and inverse uncer-
tainty models which include parametric and dynamic un-
certainty with unknown structure).

In practice, at a particular frequency the transfer func-
tion magnitude and phase are supposed to lie within a
disc-shaped region around the nominal transfer function
GN (s). Over a given frequency range, these disc-shaped
regions can be generated by the following forms: additive
(2), multiplicative input (3) and multiplicative output (4)
uncertainties, as well as by the inverse forms [sko]. In the
sequel just the first three uncertainty forms will be consid-
ered, respectively to describe the uncertain plant G(s).

Πa : G(s) = GN (s) + la(s)∆(s)

la(s) = max
k

σM [Gk(s) − GN (s)]
(2)

Πi : G(s) = GN (s)[I + li(s)∆(s)]

li(s) = max
k

σM{GN (s)−1[Gk(s) − GN (s)]}
(3)

Πo : G(s) = [I + lo(s)∆(s)]GN (s)

lo(s) = max
k

σM{[Gk(s) − GN (s)]GN (s)−1}
(4)

where σM (.) is the maximum singular value of the cor-
responding matrix; ∆(s) is the uncertainty matrix that
satisfies

∆(s)T ∆(s) ≤ I (5)

For the SISO case, m = 1, the multiplicative input and
output uncertainties equal. In the frequency domain, un-
certain SISO systems can be described using either of the
above uncertainty types as well as the following ones :
-linear interval,(linear) affine, multilinear and nonlinear
uncertainties.
Consider a SISO plant (m = 1) and a controller with
transfer functions in the following forms

G(s) =
P1(s)

P2(s)
R(s) =

R1(s)

R2(s)
(6)

where Pi(s), i = 1, 2 are a linear interval polynomials

Pi(s) = poi + p1is + ... + pniis
ni (7)

with pji ∈< pji, pji > i = 1, 2; j = 1, 2, ..., ni

Let us define the corresponding parameter uncertainty
box

Qi = {pi : pji ≤ pji ≤ pji, i = 1, 2; j = 0, 1, 2, ..., ni} (8)

The global parameter uncertainty box is then Q=Q1×Q2

The following assumptions about the linear interval
polynomials are considered:

• Elements of pi ∈ Qi, i = 1, 2 are perturbed indepen-
dently of each other. Equivalently, Q is (n1 +n2) axis
parallel rectangular box.

• Characteristic polynomials of the plant and the con-
troller are of the same degree.

According to [bhata] the closed-loop stability problem
can be solved using the Generalized Kharitonov Theorem.

Theorem 1

For a given R(s) = [R1(s)R2(s)] of real polymials:
R(s) stabilizes the linear interval polynomials P (s) =
[P1(s)P2(s)] for all p ∈ Q if and only if the controller
stabilizes the extremal transfer function

GE(s) = {
K1(s)

S2(s)

⋃ S1(s)

K2(s)
} (9)

Moreover, if the controller polynomials Ri(s), i = 1, 2 are
of the form

Ri(s) = sti(ais + bi)Ui(s)Zi(s) (10)

then it is sufficient if the controller R(s) stabilizes the
Kharitonov transfer function

GK(s) =
K1(s)

K2(s)
(11)

where Ki(s) = {Ki(s)
1,Ki(s)

2,Ki(s)
3,Ki(s)

4} stand
for Kharitonov polynomials corresponding to each Pi(s)
[khar] and

Si(s) = {[Ki(s)
1,Ki(s)

2], [Ki(s)
1,Ki(s)

3], [Ki(s)
2,

Ki(s)
4], [Ki(s)

3,Ki(s)
4]}

(12)

stand for Kharitonov segments for corresponding Pi(s);
Ui(s) is anti-Hurwitz polynomial; Zi(s) is an even or odd
polynomial; ai, bi are positive numbers and ti ≥ 0 is an
integer. Note that:

Si(s)
1 = λKi(s)

1 + (1 − λ)Ki(s)
2 λ ∈< 0 1 > .

Let the plant transfer function of G(s) be written in the
following affine form

G(s) =
P1(s)

P2(s)
=

P0,1(s) +
∑p

i=1 Pi,1(s)qi

P0,2(s) +
∑p

i=1 Pi,2(s)qi

(13)

where Pj,1(s), Pj,2(s), j = 0, 1, ..., p are real polynomials
with constant parameters and the uncertainty parameter
qi is from the interval qi ∈< qi, qi > i = 1, 2, ..., p

The description (13) represents a polytope of linear
systems with the vertices

Gvj(s) =
Pv1,j(s)

Pv2,j(s)
j = 1, 2, ..., N ;N = 2p (14)

computed for different variables qi(s), i = 1, 2, ..., p tak-
ing alternatively their maximum qi and minimum values
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qi . Based on the Edge theorem [barlet] the following re-

sults can be obtained.

Theorem 2

The controller R(s) = [R1(s)R2(s)] with real poly-
nomials stabilizes the affine system (13) for all q ∈ Q if
and only if the controller stabilizes the following extremal
transfer function

GP (s) =
λPv1,i + (1 − λ)Pv1,j

λPv2,i + (1 − λ)Pv2,j

λ ∈< 0, 1 > i 6= j, i, j = 1, 2, ..., p2p−1 (15)

Both i and j have to be taken as e vertices numbers
of corresponding edges. In general, the sets of extremal
transfer functions (9) and (15) are quite different. Whilst
the number of GE(s) is equal to 32, the number of GP (s)
depends exponentially on the number of uncertain param-
eters qi

For the case of multilinear uncertainty consider the
following uncertain plant transfer function

G(s) =
P11(s)P12(s)...P1n(s)

P21(s)P22(s)...P2d(s)
(16)

where Pij(s), i = 1, 2; j = 1, 2, ..., n(d) belong to a linear
interval polynomial specified as follows

pi,j
k ∈< pi,j

k , pi,j
k >,

i = 1, 2

j = 1, 2, ..., n(d),

k = 0, 1, ..., nij(dij)

with independently varying parameters.

Let Kij(s) and Sij(s) denote Kharitonov polyno-
mials [khar] and Kharitonov segments of corresponding
Pij(s),respectively. The following theorem holds [bhata].

Theorem 3

The controller R(s) = [R1(s)R2(s)] stabilizes the mul-
tilinear system (16) for the uncertainty box if and only
if the polynomials R(s) stabilizes the following extremal
transfer function

ME(s) = {
S11(s)...S1n(s)

K21(s)...K2d(s)

⋃ K11(s)...K1n(s)

S21(s)...S2d(s)
} (17)

For the sake of limited space, other uncertainty types
will not be considered here. For more detail see [bhata],
[grman].

Fig. 2. Standard feedback configuration with additive uncer-
tainty

Fig. 3. M − ∆ structure of closed-loop system

For different uncertainty types the following results
have been obtained

Ma(s) = −[I + R(s)GN (s)]−1R(s)

Mi(s) = −[I + R(s)GN (s)]−1R(s)GN (s) ∀s ∈ D

Mo(s) = −GN (s)R(s)[I + GN (s)R(s)]−1

(18)

Robust stability conditions are given in following the-
orem [8].

Theorem 4

Assume that the nominal closed-loop system Mk(s),
k = a, i, o is stable and the uncertainties satisfy the fol-
lowing inequality

0 < lk(s) ≤ lkm(s) k = a, i, o (19)

q Then the M − ∆ system is stable for all uncertainty
models lk(s), k = a, i, o satisfying (19) if and only if

σM (Mk(s)) <
1

lk(s)
(20)

The resulting robust decentralized controller design
procedure consist of two steps:

• designing a controller R(s) which guarantees stability
and performance for nominal plant GN (s) (nominal
stability)

• verification of the robust stability condition (20)

Nominal closed-loop stability under a decentralized
controller (GN (s) and R(s)) is guaranteed if and only
if the following conditions are satisfied [sko].

Theorem 5

The feedback system in Fig. 1 is stable if and only if

• det(F (s)) 6= 0 ∀s ∈ D

• N [0,det(F (s))] = nl where F (s) = I + GN (s)R(s) is
the return difference matrix, N [0,det(F (s))] denotes
the number of anticlockwise encirclements of the point
[0, 0i] by the Nyquist plot of det(F (s)), nl is the
number of open-loop unstable poles, ieof GN (s)R(s),
and D = {s = jω : ω ∈ (−∞,∞)} .

Let us factorize det(F (s)) in Theorem 5 as follows:

det(F (s)) = det(I + GN (s)R(s))

= det((R(s)−1 + Gd(s) + Gm(s))det(R(s))
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det(F (s)) = det(Fo(s))det(R(s)) (22)

where GN (s) = Gd(s) + Gm(s), Gd(s) = diag{GN (s)}

and Fo(s) = R(s)−1 + Gd(s) + Gm(s).

Existence of R(s)−1 is implied by the assumption that
det(R(s)) 6= 0. Using (22), Theorem 5 reads as follows.

Corollary 1

Closed-loop system comprising the nominal model
GN (s) and the controller R(s) is stable if and only if

• det(Fo(s)) 6= 0 ∀s ∈ D

•
N [0,det(Fo(s))] + N [0,det(R(s))] = nl (23)

If R(s) has no poles in the open RHP , N [0,det(R(s))]
= 0 and the encirclement condition (23) reduces to

N [0,det(Fo(s))] = nl (24)

Consider a diagonal matrix P (s) such that the follow-
ing two corollaries hold.

Corollary 2

Let P (s) = R(s)−1 + Gd(s). The nominal closed-loop
system is stable if either of the first two conditions and
the third condition are met

• det(P (s) + Gm(s)) 6= 0 ∀s ∈ D

• N [0, det(P (s) + Gm(s))] = nm where nm denotes the
number of unstable poles of matrix P (s) + Gm(s)

• either of the matrices Mk(s), k = a, i, o is stable.

For example, for k = a we obtain Ma(s) = −[P (s) +

Gm(s)]−1 = − adj[P (s)+Gm(s)]
det(P (s)+Gm(s)) The matrix Ma(s) is stable

if and only if the closed-loop characteristic polynomial
pc(s) = det(P (s) + Gm(s)) has all roots in the left half
complex plane.

Remark 1

Corollary 2 implies

• det(P (s) + Gm(s)) = det(P (s))det(I + P (s)−1Gm(s))
Because P (s) is a diagonal matrix numerators of all
its entries are to be stable. According to the small
gain theorem the necessary and sufficient condition for
closed-loop stability (if both transfer function matrices

P (s)−1 and Gm(s) are stable) reduces to

||P (s)−1Gm(s)|| < 1 ⇔ σM (Gm(s)) < σm(P (s))
(aa)

Inequality (aa) has to be fulfilled for all subsystems.

• In the sequel two methods for selecting the diago-
nal matrix P (s) are presented. For different entries
of P (s) = diag{Pi(s)}m×m the following approach
can be applied. Due to that matrices P,R,Gd are
diagonal the choice of i-th entry Pi(s) of P (s) is

following. Pi(s) = Ri(s)
−1 + Gdi(s) i = 1, 2, ...,m

or Pi(s) = Pni(s)
Pdi(s)

= RdiGddi+GdniRni

RniGddi
Denote Pni =

RdiGddi + GdniRni = RniPni Pdi = RniGddi From
above equation one obtains the characteristic polyno-
mial in the form

1 + Ri(s)
Gdni(s) − Pni(s)

Gddi(s)
= 1 + Ri(s)G

m
di(s) (bb)

where the transfer function of i-th modified subsystem
is defined as follows

Gm
di(s) =

Gdni − Pni

Gddi

(aaa)

and diagonal transfer function matrix P (s) P (s) =

{ Pni(s)
Gddi(s)

}m×m where Pni(s) is stable polynomial with

corresponding degree such that the conditions of
Corollaries 2 and 3 are met.

Denote the following polynomials as follows (index i
is omitted) [pa(s) = RdGdd + RnGdn = ansn + ... + a0 ]

pb(s) = RnPn = bmsm + ... + b0 ] and pc(s) = pa(s) −

pb(s) = cksk + ...+ c0 k = m or k = n The following
lemma is important for the next development

Lemma 1

We are given two stable polynomials pb(s) and pc(s).
The polynomial pa(s) will be stable if one of the following
condition is met:

• ϕ(ω) = |arg(pc) − arg(pb)| < π ∀ω ∈ Ω where Ω =
{ω : ω ∈< 0 ∞)}

• If for some finite number of ωi i = 1, 2, ..., I ϕ(ωi) =
|arg(pc) − arg(pb)| = π pc(ωi) 6= −pb(ωi) and for
ω 6= ωi , ϕ(ω) < π .

Proof. From Zeros exclusion principle [bhata] the poly-
nomial pa(s) will be on the boundary of stability if and
only if for some ωi ∈ Ω and stable polynomials pc(s)
and pb(s) pa(ωi) = 0 → pc(ωi) = −pb(ωi) Because for
ϕ(ω) = 0 ∀ω ∈ Ω the polynomial pa(s) is stable, pa(s)
will be stable if ϕ(ω) = |arg(pc)− arg(pb)| < π ∀ω ∈ Ω
If for some finite number of ωi i = 1, 2, ..., I ϕ(ωi) =
|arg(pc) − arg(pb)| = π pc(ωi) 6= −pb(ωi) and for
ω 6= ωi , ϕ(ω) < π the polynomial pa(s) is stable.

Remark

From the Lemma 1 and the Mikhailov test stability,
see for example [mikh] results that for ensure fulfilment
of the stability conditions of Lemma 1 the following is
recommended:

• |degree(pc(s)) − degree(pb(s))| ≤ 2

• stable roots of pc(s) should be close to stable parts of
roots of Gdd .

• the controller transfer function numerator has to be a
stable polynomial.

Corollary 3

The closed-loop system in Fig. 3 is robustly stable if
for either of the uncertainty types (2),(3) or (4) satisfying
(19) and conditions of Corollary 2 with the corresponding
below-given inequalities are met:

• for the additive uncertainty

σM ([P (s) + Gm(s)]−1) <
1

|la(s)|
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• for the input multiplicative uncertainty

σM ([P (s) + Gm(s)]−1GN (s)) <
1

|li(s)|
(26)

• for the output multiplicative uncertainty σM (GN (s)

[P (s) +Gm(s)]−1) < 1
|lo(s)|

For identical entries of P (s) = p(s)I the following
approach has been developed. From Corollary 2 results

I + R(s)[Gd(s) − P (s)] = 0 (27)

which on the subsystem level

Geq
i = Gi(s) − pi(s) i = 1, 2, ...,m (28)

and controllers Ri(s).

Recall that the characteristic function of Gm(s) are
defined as follows det(gi(s)I−Gm(s)) = 0 i = 1, 2, ...,m
If we consider identical entries in the diagonal matrix
P (s) = p(s)I , and substitute into the first expression
of Corollary 2 and equate it to zero

det(p(s)I + Gm(s)) = 0 (29)

we actually obtain a relation for calculating p(s) as a
characteristic function of [−Gm(s)]
If for a fixed l ∈ {1, 2, ...,m} p(s) is chosen as p(s) =
−gl(s) then

det(Fo(s)) =

m
∏

i=1

[p(s) + gi(s)] = 0 (30)

In that case according to respect to Corollary 2 the closed-
loop system has located poles in the left half plane and
some on the imaginary axis. Stability conditions of com-
plex system for the case of identical entries of P (s) are
given in the following Theorem [kozv].

Theorem 6

The closed-loop system in Fig. 1 comprising the system
GN (s) and a not unstable decentralized controller R(s)
is stable with a degree of stability α > 0 if and only
if for a selected characteristic function of −Gm(s − α),
p(s − α) = −gl(s − α) there exists a constant αm such
that for all α and any α1 0 ≤ α1 < α ≤ αm and ∀s ∈ D
the following conditions hold

det(Fo(s)) =
m
∏

i=1

[p(s − α) + gi(s − α1)] 6= 0

m
∑

i=1

N [0,meq
il (s)] = nm

(31)

where meq
il = [p(s − α) + gi(s − α1)] i = 1, 2, ...,m

However, if αm → 0 and for some s ∈ D happens that
det(Fo(s)) =

∏m

i=1[p(s−α)+ gi(s−α1)] = 0 ieif the plot

of p(s − α) and any characteristic locus gi(s − α1), i =

1, 2, ...,m happen to cross, conditions of Theorem 6 are
not met and the closed-loop stability cannot be achieved
using the decentralized controller R(s). The above partial
results are summarized in the following definition and
theorem.

Definition 1

For l ∈ {1, 2, ...,m} and α > α1 ≥ 0 the characteristic
function gl(s − α) of [−Gm(s − α)] is called a stable
characteristic function if it satisfies Theorem 6. The set
of all stable characteristic functions is denoted PS .

Theorem 7

The closed-loop system in Fig. 1 comprising the system
GN (s) and a not unstable decentralized controller R(s)
is stable with a degree of stability α > 0 if and only if :

• p(s − α) = −gl(s − α) ∈ PS ∀s ∈ D for some fixed
l ∈ {1, 2, ...,m} and α > α1 ≥ 0

• all equivalent characteristic polynomials (27) are sta-
ble with the roots satisfying Res ≤ −α

EXAMPLES

In the first example the Magnetic levitation model has
been considered. The problem is to design a robust PID
controller which will guarantee stability and a desired
performance in terms of phase margin over the whole
operation range of the plant. The magnetic levitation
model is described in [magn] and the linearized model
is given as follows

ẋ = Ax + Bu, y = Cx

where xT = [∆x ∆x1] and

A =

[

0 1

−
k2

DAkf U2

MUD

mk(xoo−xo)3 −
kfv

mk

]

, B =

[

0

−
2k2

DAkf UMUD

mk(xoo−xo)2

]

C = [kADkx 0]

The corresponding transfer function

y(s) = C(sI − A)−1Bu(s)

→ G(s) =
y(s)

u(s)
=

km

as2 + bs − 1

For more detail see [magn].

The linear interval model of the magnetic levitation is
given as follows

km ∈< 2.4 6.8 >

a ∈< 1.34 4.025 > ∗10−4

b ∈< 1.7975 5.3895 > ∗10−6

Let the required of closed-loop performance be given in
terms of MT = 1.6, MS = 2 and a phase margin more
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than PM = 72 degrees. Using the extremal transfer func-
tion (9) and the Bode approach the robust PID controller
transfer function has been obtained

R(s) =
0.02748s2 + 1.278s + 8.162

s

The Bode diagram for the worst case open-loop system
is in Fig. 4. The Nyquist plot with the circle defining the
prohibited area are in Fig. 5

The worst case closed loop step response is given in
Fig. 6. Applying Corollary 2 and Remark 1 in the ro-
bust PID controller design for the above example have

obtained the following results. The additive uncertainty

|la(s)| versus omega plot is depicted in Fig. 7

Taking Pn(s) = (s + 60)(s + 5)(s + 2) and applying

the D-partition approach the following PID controller is

obtained kp + ki/s + kds = 1.5 + 3/s + 0.03s Verification
of the robust stability condition (26) is in Fig. 8; the D-

curve for choosing the controller gain kd is in Fig. 9.

Closed-loop step responses in the two plant working

points are in Fig. 10 and Fig. 11, 1-st working point
transfer function, Fig. 10: G1(s) = 6.8

0.0004025s2+5.389−6s−1
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Fig. 10. Closed-loop step response in the 1st working point Fig. 11. Closed-loop step response in the 2nd working point
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Fig. 12. Characteristic locus g1(s − α) of Gm(s − α), α =

{0, 0.4}
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second working point transfer function, Fig. 11: G2(s) =
2.4

0.000134s2+1.797−6s−1

The second example deals with the glass tube draw-
ing plant where the glass metal flowing out from feeder
is wrapping around a rotating cylindrical blowpipe. At
its lower end, a tube is continuously being drawn using
a drawing machine situated at the end of the line. Form-
ing air is blown into the tube under a certain pressure.
The produced glass tube has to have required parame-
ters: outer diameter and wall thickness; these quantities
are manipulated through the pressure of the forming air
and the drawing speed of the drawing machine. Assume
pairing of the input and output variables defining indi-
vidual subsystems to be completed as follows:

u1 - blowing air pressure

u2 -speed of drawing

y1 -outside diameter of the tube and

y2 -tube wall thickness.

The process was linearized in several operating points.
The below transfer function matrix corresponds to one
chosen operating point.

G(s) =

[

187e−.5s

s2+10.6s+17.2
5.45(s−4.5)

s2+11.85s+27.95
25

s2+8.84s+19.52
57.5

s2+13.42s+39.76

]

The objective is to design two local decentralized PID
controllers guaranteeing that the pre-set output param-
eters (wall thickness, outside tube diameter) are main-
tained and the whole process is robustly stable within 15
percent of plant parameter changes. The design procedure
is as follows: The characteristic loci (CL) of Gm(s − α)
for α = {0, .4} are plotted in Fig. 12 and Fig. 13. One of
them has been chosen to generate P(s).

Consider the first characteristic locus g1(s − α) and
specify p(s) to be p(s) = −g1(s−0.4) ; the corresponding
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equivalent characteristic loci meq
i1 = [g1(s−.4)−gi(s), i =

1, 2 are plotted in Fig. 14.

According to Definition 1 g1(s − .4) is a stable char-
acteristic locus. Next, the D-partition method has been
applied to both equivalent subsystems obtained by modi-
fying the Nyquist plots of decoupled subsystems through
the chosen characteristic locus g1(s-.4). Corresponding D-
plots in the (kp = r0, ki = r1) plane for the first and sec-
ond subsystems are in Fig. 15 and Fig. 16, respectively
.

From the boundary plots of the stable controller pa-
rameter regions with degree of stability α = .4 the

following PI controller parameters have been chosen
R1(s) = .047+ .0564

s
R2(s) = 0.3999+ .7041

s
The closed-

loop poles are as follows eigCL = {−.4232 ± 0.1632i ;
−0.8181;−1, 277;−1.3803; −6.4557 ± 3.55i ; −7.3585;
−10.7034 ± 5.1116i ; −14.4123} The above designed lo-
cal PI controllers guarantee stability of the full nominal
closed-loop system with the achieved degree of stability
α = 0.4232 . Assume that all parameters of the plant
transfer function vary within ±15 percent around their
nominal value;thus the uncertain system can be described
by 3 transfer function matrices corresponding to the nom-
inal model, the +15 percent model and the -15 percent
model. After evaluating the plant uncertainty using (2),
(3), (4) the three plots in Fig. 17 have been obtained. To
verify robust closed-loop stability under the decentralized
controller designed for the nominal model (20) has been
modified to give

lk(s)σM (Mk(s)) < 1 k = a, i, o

Fig. 18 shows the result of the robust stability test: as all
plots (either of them one would suffice) lie below 1, the
closed-loop system is robustly stable for the 15 percent
changes in all plant parameters.

5 CONCLUSION

In this paper a novel design technique is proposed to
guarantee a required performance of the full MIMO sys-
tem by applying the independent design to the equivalent
subsystems.
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