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Abstract: The paper provides survey of some recent quadratic stability methods for static output 
feedback robust controller design for linear continuous-time invariant systems with convex 
polytopic uncertainty and their mutual comparison. Robust controller design is based on linear 
matrix inequalities (LMIs) conditions and single Lyapunov functions. The presented quadratic 
stability methods are compared on numerical examples and randomly generated ones and it is 
shown which of them provides the less conservative results. 
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1  INTRODUCTION 

 One of the most challenging problems in control theory remains to find numerically tractable 
necessary and sufficient conditions for the stabilizability of linear time-invariant (LTI) systems via 
static output feedback. The output feedback problem is one of the most important open questions of 
control engineering. In a simple way, the problem can be formulated as follows: for a given complex 
linear system a robust controller with a static output feedback is to be found, which would provide 
some desirable characteristics to the closed-loop systems, or determine that such a feedback does not 
exist. 

Lyapunov functions have been used in the study of stability of dynamic systems since many 
years ago. Concerning linear systems with uncertain parameters, the use of Lyapunov functions has 
allowed important developments which are mainly related to the concept of quadratic stability and 
convex optimization applied to robust control problems during the last two decades. Thanks to 
quadratic stability, the stability of a polytope of matrices can be attested by means of convex 
feasibility test performed only at the vertices of the uncertainty domain, which means a feasibility test 
of a set of linear matrix inequalities (LMIs). A drawback of quadratic stability is that it guards against 
arbitrary fast parameter variations and thus it uses a single Lyapunov function for testing over the 
whole uncertainty box [Boyd et al., 1994]. 

The aim of this paper is to provide a numerical comparison among four LMI based quadratic 
methods for the robust stability of uncertain linear systems in polytopic domains: the V-F iteration 
method [El Ghaoui and Balakrishnan, 1994], the two-step method [Veselý, 2001], the linearization 
method [Cao et al., 1998, Han and Skelton, 2003, de Oliveira  et al., 2000, Rosinová and Veselý, 
2003] and [Henrion et al., 2002]. The V-F iteration algorithm is based on an alternative solution of 
two convex LMI optimization problems obtained by fixing the Lyapunov matrix or the gain controller 
matrix. The two-step method does not require iteration of LMI problems, the linearization and 
Henrion’s quadratic method uses iterative LMI algorithm. An aspect of conservatism is investigated 
on numerical examples and randomly generated ones. The proposed LMI based algorithms are 
computationally simple and tightly connected with the Lyapunov function, quadratic stability, 
guaranteed cost and LQ optimal state feedback design. 
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2  PROBLEM FORMULATION AND PRELIMINARIES 

Consider the following linear continuous time-invariant uncertain system 
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where nx R∈ , mu R∈  and ly R∈  are state, control and output vectors, respectively; nnA ×∈R , 

mnB ×∈R  and nlC ×∈R  are known matrices of appropriate dimensions; Aδ , Bδ  are unknown but 
norm bounded uncertainties. In the next development the matrix affine type uncertain structure will be 
used 
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where Aj, Bj are known matrices; jjj εεε ,∈  are uncertain parameters with known lower and upper 

uncertainty bounds. In general, the polytope characterization of uncertainties results in less 
conservative controller designs than using other characterizations of uncertainty [Boyd et al., 1994]. 

The problem studied in this paper can be formulated as follows. For linear continuous time-
invariant system described by (1) a robust static output feedback controller is to be designed for the 
control algorithm 
 

FCxu = ,  lmF ×∈R  (3) 
 
such that the closed loop system 
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is stable for all admissible uncertainties described by (2) and simultaneously guaranteeing the 
suboptimal solution to the performance index 
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where 0>= TQQ  and 0>= TRR  are matrices of compatible dimensions, nnQ ×∈R , mmR ×∈R . 

The nominal model of the system (1) is  
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The following lemma is well known [Lankaster, 1969]. 
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Lemma 1 
Let 0>= TQQ . The matrix A is quadratically stable if and only if exists the matrix 0>= TPP  such 
that the following Lyapunov matrix equation 
 

0=++ QPAPAT . (7) 
 

A linear time invariant system is stable if and only if it is quadratically stable. It is possible, however, 
that e.g. linear polytopic systems can be stable without being quadratically stable [Boyd et al., 1994]. 

The closed loop polytopic system with output feedback algorithm (3) can be described by the 
list of its vertices ( pN 2= ) 
 

( ) xAxFCBAx civivi =+=& ,  Ni ,,2,1 K=  (8) 
 

The linear uncertain system (4) belongs to a convex polytopic set defined as 
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whereby 
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Lemma 2 
The system represented by (9) is quadratically stable if and only if there is a common Lyapunov 
matrix 0>P  such that 
 

0<+ ci
T
ci PAPA , Ni ,,2,1 K=  (11) 

 

3  OUTPUT FEEDBACK CONTROLLER DESIGN 

In this section we present four quadratic stability methods (the V-F iteration method, the two- 
step method, the linearization method and the Henrion method) to design a static output feedback 
controller for linear continuous time-invariant systems (1) which ensures the guaranteed cost (5) of the 
closed loop system. 
 
 
3.1 V-F iteration method [El Ghaoui and Balakrishnan, 1994] 

Inequalities (11) can be extended and modified to the form 
 
 ( ) ( ) 0<+++++ RFCFCQFCBAPPFCBA TT

vivi
T

vivi ,  Ni ,,2,1 K=  (12) 
 
In the system of inequalities (12) the positive definite matrix P and the feedback gain F are unknown. 

If such matrices exist then the polytopic system is quadratically stable and simultaneously the matrix F 
ensures a minimum value of the quadratic performance criterion (5). 
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For the functional (5) the following inequality holds 
 

( )∫
∞
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where the matrix P is the solution to inequalities (12) and x0 is initial condition. With regard to 
matrices P and F a solution to (12) belongs to a class of bilinear matrix inequalities (BMI) and in the 
case of a convex problem (e.g. when matrix F is known) to the class of linear matrix inequalities 
(LMI). In general a modification of nonlinear (convex) inequalities to the LMI form employs the 
Schur complement [Boyd et al., 1994] i.e. for any matrices D11, D22 and D12 where D11 and D22 are 
symmetric the following statements are equivalent: 
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b) if 0:0 12
1

22121122 >−> − TDDDDD  (15) 

c) if 0:0 12
1

11122211 >−> − DDDDD T . (16) 
 
Next we present solution to (12) by the V-F iteration. Its principle consists in alternately solving two 
convex LMI optimization problems, where in the first problem we compute the matrix P for a fixed F 
and in the second problem vice versa.  

The first task is to find the matrix F for which systems FCBA vivi + , Ni ,,2,1 K=  are all stable. This 
matrix determines initial condition for the problem solution. 
 
Algorithm 1 

1. 1=j , Q = QT > 0 , R = RT > 0 and 0FF = (For stable matrices viA , F0 = 0) 
2. Using the LMI algorithm compute the matrix Pj from the following inequalities 
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 where ρ is a given positive upper bound for the maximal eigenvalue of Pj. 

3. For the known matrix 0>jP  compute Fj using LMI 

 

( ) ( )
Ni

RCRF
RFCQCFBAPPCFBA

j

T
j

T
jvivijj

T
jvivi ,,1,0 K=<

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
++++  (18) 

 
4. Compute 1−−= jj FFer . 

 If er ≤ tolerance stop, else 1+= jj  and go to Step 2. 
 
The V-F iteration algorithm is guaranteed to converge, but not necessarily to the global optimum of 
the problem depending on the starting conditions. 
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3.2 Two-step method [Veselý, 2001] 

Consider the following algebraic Riccati inequalities 
 

01 <+−+ − QPBRPBPAPA T
vivivi

T
vi  (19) 

 
Define 1−= SP . Using the Schur complement formula (14) and (15) the inequality (19) is equivalent 
to the following linear matrix inequality 
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where 0≥γ  is some non-negative constant. 

Inequalities (12) can be extended and modified to the form 
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T
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and after some manipulation 
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where ( )QPBRPBPAPAG T

vivivi
T
vii +−+−= −1 . 

With 1−= SP , inequality (22) can be rewritten using Schur complement as follows 
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The algorithm for static output feedback simultaneous stabilization for the system (9) with 
a guaranteed cost (13) using the non-iterative LMI approach is given as follows. 
 
Algorithm 2 

1. Select Q = QT > 0 and R = RT > 0 and using the LMI based algorithm calculate S from the 
inequality (20). 1−= SP . 

2. For the known matrix P compute F from the inequality (23). 
 
If the solution (20) is not feasible, the polytope system (8) is not simultaneously stabilizable and if 
(23) is not feasible (the closed loop system (8) is not stable) change Q and R or decrease jε , 

pj ,,2,1 K= . 
 
If the solutions (20) and (23) are feasible with respect to S and F then the uncertain system (1) is 
quadratically stable with a guaranteed cost control algorithm Fyu =  and 00

* PxxJ T=  is the 
guaranteed cost for the uncertain closed loop system. 
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3.3 Linearization method [Cao et al., 1998, Han and Skelton, 2003, de Oliveira  et al., 2000, 
Rosinová and Veselý, 2003]. 

Inequalities (21) can be modified to the following quadratic matrix inequalities (QMIs) 
 

( ) ( ) 0111 <+++−++ −−− PBRFCRPBRFCPBRPBQPAPA T
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T
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T
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If it is possible to find P > 0 and F satisfying the QMI in equation (24), then a stabilizing static output 
feedback gain exists. An advantage of this approach to obtain a stabilizing feedback gain F is that F is  
no longer assumed to be a function of the solution P of a special equation or inequality. 

Due to the negative sign in the PBRPB T
vivi

1−−  term, equations (24) cannot be simplified to LMI. To 

accommodate the PBRPB T
vivi

1−−  term, we introduce an additional design variable X. By linearization 

using inequality ( ) ( ) 01 ≥−− − PXBRBPX T
vivi

T  for any X and P of the same dimension, we obtain 
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with equality holding for X = P. By combining inequalities (25) and (24), we obtain a sufficient 
condition for the existence of static output feedback matrix F given by 
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Using the Schur complement (14) and (15), inequalities (26) for fixed matrix X are equivalent to the 
following LMIs 
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These LMIs can be solved by an iterative approach. The LMI problem is convex and can be solved 
efficiently if a feasible solution exists. 
 
Algorithm 3 

1. Select Q = QT > 0 and R = RT > 0 and choose the initial value of X for example from the 
following algebraic Riccati equation 

 
01 =+−+ − QPBPBRPAPA TT   (28)  

 
 Set j = 1 and X = P. 

2. For the known matrix X compute F and P = PT > 0 using matrix inequalities (27) 
3. Compute PXer −= . 

 If er ≤ tolerance stop, else j = j + 1, X = P and go to Step 2. 
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If the algorithm fails to arrive at a stabilizing solution, we may select another Q and run the LMI 
algorithm again. Our numerical experience indicates that the initial choice with Q = I always leads to 
a convergent result. 
 

3.4 Henrion’s quadratic method [Henrion et al., 2002]. 

Consider the following Henrion’s lemma for continuous-time systems. 
 
Lemma 3 
The matrix FCBAA vivici +=  is robustly stable if there exists a matrix E and a matrix TPP =  
satisfying the LMI 
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The linear matrix inequalities (29) can be extended and modified to the form 
 

( ) ( ) ( )
( )

0
2

>⎥
⎦

⎤
⎢
⎣

⎡

+++−
+++−−−+++

IPFCBAE
PFCBAERFCFCQEFCBAFCBAE

vivi

T
vivi

TTT
vivivivi

T
 (30) 

 

The term (1,1) of BMIs (30) can be modified to the following quadratic matrix inequalities 
 

( ) ( )( ) 0111 >−−−++−+ −−− EBRFCREBRFCEBRBEQAEEA T
vi

TT
vi

T
vivi

T
vi

TT
vi  (31) 

 

By linearization using inequality ( ) ( ) 01 ≥−− − EXBRBEX T
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T  for any matix X and E of the same 
dimension, we obtain 
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with equality holding for X = E. By combining inequalities (31) and (32), we obtain a sufficient 
condition for the existence of static output feedback matrix F and matrix E given by 
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Using the Schur complement inequalities (33) for fixed X are equivalent to the following LMIs 
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Applying LMIs (34) to matrix inequalities (30) we obtain the following LMIs 
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These LMIs can be solved by an iterative approach. The LMI problem is convex and can be solved 
efficiently if a feasible solution exists. 
 
Algorithm 4 

1. Select Q = QT > 0 and R = RT > 0 and choose the initial value of X  for example X = A. Set 
j = 1. 

2. For the known matrix X compute F and matrix E using matrix inequalities (35) 
3. Compute EXer −= . 

 If er ≤ tolerance stop, else j = j + 1, X = E and go to Step 2. 
 
If the algorithm fails to arrive at a stabilizing solution, we may select another Q and run the LMI 
algorithm again. 

 

4  EXAMPLES 

4.1 Method of evaluation 

In this section the properties and power of individual methods presented in Sections 3 have 
been tested on several examples taken from references and laboratory plants at our department as well 
as on 50 randomly generated ones. To be able to evaluate the conservatism of each particular method, 
the term “stability region size” has been adopted. In each tested example, it has been measured in 
terms of the parameter ε corresponding to the maximum uncertainty polytope for which the closed 
loop affine uncertain system with the gain matrix F still remains stable.  

Consider the following closed loop polytopic system with output feedback algorithm (3) 
described by the list of its vertices ( pN 2= ) 
 

( ) xAxFCBAx civivi =+=& ,     Ni ,,2,1 K=  (36) 
 
The closed loop robust stability problem can be extended, as a question may arise  about “how robust” 
the closed loop under the considered controller is: 

What is the maximum range for uncertainty parameters such that the closed loop affine uncertain 
system with the gain matrix (36) remains stable? 
 

jεε max= , pj ,,2,1 K=  (37) 

 
The following test has been applied:  

 first, all considered methods were tested on ten continuous-time models taken from references 
and five laboratory plants at our department, 
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 then, 50 matrix viA , viB  for closed loop polytopic system (36) were generated considering 

1;1−∈jε , pj ,,2,1 K=  for the pairs (n = 4, p = 2) and (n = 5, p = 2); (the matrix C was 

constant: C = [1 0 1 0; 0 1 0 1] and C = [1 0 1 0 0; 0 1 0 1 0]), 
 finally, in each example, the maximum value of the uncertainty parameter ε was evaluated for 

each considered robust stability condition. 
The obtained results have been evaluated as follows: 

 For each example, all methods were arranged according to the maximum value of the uncertainty 
parameter ε and number of points assigned with respect to their priority (the highest value of      
ε - best rating – 1 point, ... etc.), i.e. the fewer points, the better rating of the respective method. 

 For each method, the mean value εm of all uncertainty parameters obtained in the considered 
examples was computed, and the methods were arranged according to decreasing values of εm. 
Hence, in this case, the higher value of εm, the better rating of the respective method. 

 
These two proposed criteria have been chosen due to their obvious interpretation. While the first 
criterion evaluates the method’s priority (“the fewer points – the better method”), the second one 
estimates the “size” of the stability region (“the higher εm – the better method”). 

 

4.2 Results for real plants 

All considered methods were tested on ten continuous-time models taken from references: 
- [Benton and Smith, 1999], (p = 1, n = 4, m = 1, l = 2), (p = 2, n = 4, m = 2, l = 1), 
- [Azuma et al., 2000], (p = 2, n = 3, m = 2, l = 2), 
- [Takahashi et al., 2002], (p = 1, n = 3, m = 1, l = 3), 
- [Cao and Sun, 1998], (p = 2, n = 3, m = 1, l = 2), (p = 1, n = 3, m = 1, l = 2), 
- [Chilali et al., 1999], (p = 1, n = 5, m = 2, l = 3), 
- [Veselý, 2000], (p = 1, n = 3, m = 1, l = 2), 
- [Veselý et al., 2001], (p = 2, n = 3, m = 1, l = 2), 
- [Veselý, 2001], (p = 2, n = 10, m = 2, l = 4), 

and five laboratory plants at our department. 

Results obtained for the above-considered pairs are summarized in Table 1 and the corresponding 
charts are in Fig. 1 and Fig. 2. 
 
 
Table 1 

Methods V-F TS LIN HEN 
Rating 2.3333 3.2000 2.4667 2.6667 

εm 1.3117 0.2693 1.3484 1.2108 

 
where the above acronyms have the following meaning:  
V-F − V-F iteration method [Ghaoui and Balakrishnan, 1994], Algorithm 1 
TS − two-step method [Veselý, 2001], Algorithm 2 
LIN − linearization method [Cao et al., 1998], Algorithm 3 
HEN − Henrion’s quadratic method [Henrion et al., 2002], Algorithm 4 
 
where rating and maximum uncertainty parameter εm have been calculated using the mean values 
obtained from the 15 examples. 
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For all four quadratic methods (V-F, TS, LIN and HEN) the V-F iteration method is the less 
conservative:  the method has obtained a minimum of points. The second place goes to the method 
LIN but the mean value εm is larger than in other methods. The third place belongs to the method HEN. 
On the average, for fifteen examples the two-step method is the most conservative with smallest mean 
value of uncertainty parameter εm. Note that all systems were been stable. 
 

4.3 Results for generated examples 

For 50 matrix viA , viB  for closed loop polytopic system (36) were generated considering 1;1−∈jε , 

pj ,,2,1 K=  for the pairs (n = 4, p = 2) and (n = 5, p = 2). The results have been evaluated as 
explained in Section 4.1. 

Results obtained for the above-considered pairs are summarized in Table 2 and the corresponding 
charts are in Fig. 3 and Fig. 4. 
 
Table 2 
p n  V-F TS LIN HEN 

Rating 2.94 3.16 1.60 2.00 

εm 1.47 1.36 2.97 2.29 4 

σs 0.80 1.14 2.05 1.07 

Rating 2.64 3.58 1.92 1.80 

εm 1.62 1.10 2.05 2.04 

2 

5 
σs 0.79 0.63 1.27 0.92 

 
where rating, maximum uncertainty parameter εm and standard deviation σs have been calculated using 
the mean values obtained from the 50 closed loop polytopic systems. 
 
 
 
 

Fig. 1 – Result of robust stability evaluation 
             in terms of rating  
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Fig. 2 – Result of robust stability evaluation  
             in terms of uncertainty εm 
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From all four quadratic stability methods (V-F, TS, LIN and HEN) the linearization method is the less 
conservative for a first pair (n = 4, p = 2) and the henrion’s quadratic method is the less conservative 
for a second pair (n = 5, p = 2): these methods have obtained a minimum of points. The third place 
goes to the V-F method and the most conservative is the two-step method. When the affine system has 
become more complex (increased n) the LIN and TS methods have become more conservative on the 
contrary to the V-F method and HEN method. 

 

5  CONCLUSIONS 

The paper provides a numerical comparison of four quadratic stability methods based on LMI 
conditions and a single Lyapunov function for continuous-time linear uncertain system with polytopic 
uncertainties. According to the proposed comparative test the linearization method and henrion’s 
quadratic method provides less conservative results, generally. The presented algorithms are heuristic 
and may fail to determine the feedback gain, even if it exists. One of possible reasons could be too 
high requirements on performance. Advantage of static output feedback robust controller design by 
quadratic stability methods is that they are computationally simple. 
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