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Abstract: The paper provides survey of some recent robust stability conditions, their 
mutual comparison, and presents new robust stability conditions for continuous- and 
discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based 
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conditions are appropriate for output feedback design. Numerical examples thoroughly 
illustrate power of the considered robust stability analysis methods and show which of them 
provides the less conservative results. 
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1 INTRODUCTION 

During the last two decades, robustness has been recognized as a key issue in the analysis and 
design of control systems. The field of robust control methods based on small-gain-like 
robustness conditions started developing with the pioneering work of Zames (Zames 1981) 
where the consequence of the robust control paradigm was definition of the control design 
problem as an optimization problem. Only at the end of 80s a practical solution to this problem 
was found in (Doyle et al. 1989, Fan et al. 1991). It is worth to mention some algebraic 
approaches, which followed the seminal work of Kharitonov (Kharitonov 1979, Bhattacharyya et 
al. 1995). For convex polytopic uncertainty the Edge theorem (Bartlett et al. 1988) and related 
works provide stability conditions for polytopic systems (Bhattacharyya et al. 1995). The recent 
approach to which belongs this paper, covers the class of Lyapunov-like and LMI methods 
(Boyd et al. 1994). 

Description of uncertain systems using the convex polytope-type uncertainty has found its 
natural framework in the LMI formalism. The LMI stability analysis of such systems is based 
upon the quadratic stability. A drawback of quadratic stability is that it guards against arbitrary 
fast parameter variations and thus it uses a single Lyapunov function for testing stability over the 
whole uncertainty box (Boyd et al. 1994). To reduce quadratic stability conservatism in 
analyzing robust stability of polytopic systems, the affine Lyapunov function has been proposed 
in (Gahinet et al. 1996) and parameter-dependent Lyapunov function (denoted as PDLF) has 
been introduced for both the continuous-time systems (Peaucelle et al. 2000, Ebihara Y. and 
Hagiwara T. 2002, Henrion et al. 2002, Takahashi et al. 2002, Veselý 2003) and the discrete-
time systems (de Oliveira et al. 1999). The affine quadratic stability method (Gahinet et al. 
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1996) is the oldest of these methods employing Lyapunov function that varies depending on 
uncertainty parameter.  

Stability analysis conditions developed so far for a linear polytopic system are based on 
sufficient stability condition; therefore they still include certain level of conservatism. Another 
important feature of stability condition is its applicability for a robust controller synthesis (well 
known quality of this kind is dilation: it means that two matrices of interest do not appear in a 
product). Hence, the reason for development of new stability analysis methods that motivated 
also the latter mentioned papers could be summarized as: 

- to relax a sufficient robust stability conditions and decrease their conservatism as much as 
possible, 

- to propose stability condition in the form that could be easily modified for robust output 
feedback controller design. 

In control synthesis, it is also important to assess and choose the least conservative method of 
stability analysis.  

This paper tackles the following issues: 

1. Comparison of numerical results obtained from the robust stability analysis using various 
parameter-dependent Lyapunov functions for both continuous-time and discrete-time 
systems. 

2. Development of a new robust stability condition for continuous-time polytopic systems, 
which provides less conservative results in comparison with several recent parameter-
dependent Lyapunov methods (Peaucelle et al. 2000, Ebihara Y. and Hagiwara T. 2002, 
Henrion et al. 2002, Takahashi et al. 2002, Veselý 2003). The new stability condition is 
required to be directly applicable for output feedback design. The discrete-time stability 
condition is proposed as well. 

The paper is organized in the following way. In Section 2 the problem formulation and robust 
stability analysis approaches are recalled: the well-known results on quadratic stability and a 
survey of several recent affine Lyapunov function and parameter-dependent Lyapunov function 
methods. Section 3 presents the main result: new developed stability conditions for polytopic 
systems both for continuous and discrete-time system. Solution of numerical examples and a 
thorough comparison of obtained results with the existing ones are in Section 4.  
A standard notation has been used throughout the paper. A real symmetric positive (negative) 
definite matrix is denoted as P > 0 (P < 0). Much of the notation and terminology follows (de 
Oliveira et al. 1999, Henrion et al. 2002). 

 

2 PROBLEM FORMULATION AND PRELIMINARIES 

Consider the class of uncertain linear systems described as 

 ( ) ( ) ( )xAxAAAAx pp Θ=Θ++Θ+Θ+= L22110δ  (1) 
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where δ(.) denotes the derivative operator for continuous-time systems or the forward difference 
operator for discrete-time ones, nRx∈  is the state vector, nn

k RA ×∈ , k = 0, 1, 2,..., p are 

constant matrices, [ ] p
p R∈ΘΘ=Θ K1  is vector of uncertain, possibly time varying parameters, 

assuming their values and rates in intervals 

 jjj ΘΘ∈Θ , ,  jjj rr ,∈Θ& ,     j = 1, 2,..., p (2) 

where jjjj rr ,,,ΘΘ  are known lower and upper uncertainty bounds, respectively. The system 

(1) is referred to as an affine parameter dependent model. Let Γ and Λ denote the sets of vertices 
of the parameter box and of the parameter variation rate box (2), respectively 

 ( ){ }jjjjp or Θ=Θ==Γ γγγγ :,,1 K  

 ( ){ }jjjjp rorr ===Λ λλλλ :,,1 K . (3) 

Let  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Θ+ΘΘ+Θ
=Θ

2
,,

2
11 pp

m K  (4) 

denotes the average of the vector of  uncertain parameters. 

There are two particular cases of robust stability analysis problem. 

1. The uncertain parameter vector pR∈Θ  is a fixed but unknown element of a given 
parameter set. 

2. The uncertain parameter Θ  is a time varying function pRR →Θ :  which belongs to 
some set defined in pR . The equation (1) is then to be interpreted in the sense of time 
variant system. 

The first case typically appears in models in which the physical parameters are fixed but only 
approximately known up to some accuracy. Then, uncertain parameter equation (1) defines a 
linear time invariant system. In this case parameter dependent Lyapunov function has been 
introduced. Methods based on quadratic stability can be applied in both cases. To enable 
comparison of numerical results obtained in this paper for the robust stability analysis, the time 
invariant model will be considered in the sequel. 

The parameter dependent model (1) is a polytope of linear affine systems, which can be 
described by the list of its vertices 

 ( ) xAx vi=δ ,      i = 1, 2,..., N (5) 

where pN 2=  is number of polytope vertices. 

The polytope vertices are computed for different uncertain parameters jΘ , alternatively taken at 

their maximum jΘ  and minimum jΘ  for j = 1, 2,..., p. 

The linear uncertain system (5) belongs to a convex polytopic set defined as 
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( ) ( )xAx αδ =  (6) 

whereby 

 ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

≥=== ∑ ∑
= =

N

i

N

i
iivii AAAS

1 1
0,1,:: ααααα . (7) 

Note that parameter vector [ ]TNααα ,,1 K= is fixed but unknown. 

In the following definitions and lemmas several recent results on robust stability analysis are 
presented. Using the concept of Lyapunov stability it is possible to formulate the following 
definition. 
 

Definition 1  
Uncertain system (6) is robustly stable in the uncertainty box (7) if and only if there exists a 
matrix ( ) ( ) 0>= αα TPP  such that  

a) for a continuous-time system 
 ( ) ( ) ( ) ( ) 0<+ αααα APPAT  (8) 

b) for a discrete-time system 
 ( ) ( ) ( ) ( ) 0<− αααα PAPAT  (9) 

for all α such that ( ) SA ∈α . 
  □ 

According to (de Oliveira et al. 1999) there is no general and systematic way to formally 
determine P(α) as a function of A(α) and uncertain parameter α. Such a matrix P(α) is called the 
parameter-dependent Lyapunov matrix and for a particular structure of P(α) the inequalities (8) 
and (9) define the parameter dependent quadratic stability (PDQS).  

A simple way to choose P(α) is to look for a single Lyapunov matrix P(α) = P. This case, 
denoted as quadratic stability is characterized  in the following lemma. 

 

Lemma 1  (Boyd et al. 1994) 
Uncertain system (6) is quadratically stable in the uncertain box (7) if and only if there exists a 
matrix 0>= TPP  such that 

a) for a continuous-time system 
 0<+ vi

T
vi PAPA ,  i = 1, 2,..., N (10) 

b) for a discrete-time system 
 0<− PPAA vi

T
vi ,   i = 1, 2,..., N (11) 

  □ 
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Unfortunately, this approach generally provides quite conservative results. To reduce the 
conservatism when (1) is affine in Θ and matrices Ak, k = 0, 1, 2,..., p are time invariant, an affine 
Lyapunov function P(Θ) has been introduced (Gahinet et al. 1996) 

 ( ) ppPPPPP Θ++Θ+Θ+=Θ L22110  (12) 

Then, the sufficient conditions for affine quadratic stability are given in the next lemma. 

 

Lemma 2  (Gahinet et al. 1996) 
Consider the linear system (1) and the parameter-dependent Lyapunov function (12). The 
continuous-time system (1) is affine quadratically stable if A(Θm) is stable and there exist (p+1) 
symmetric matrices pPPP ,,, 10 K  such that ( ) 0>ΘP  satisfies  

 ( ) ( ) ( ) ( ) ( ) ( ) ∑
=

<Θ+−++=
p

j
jj

T MPPAPPAL
1

2
0 0, λγγγγλγ &  (13) 

for all ( ) Λ×Γ∈×λγ  and 

 0≥++ jjjj
T
j MAPPA   j = 1, 2,..., p (14) 

where 0≥= T
jj MM  are some positive semidefinite matrices. 

  □ 

In this case, the stability is guaranteed also for time-varying system with constrained rate of 
parameter variation. Note that for case 021 ==== pPPP L  the conditions (13) and (14) 

reduces to quadratic stability condition. Affine quadratic stability encompasses quadratic 
stability but in general can be more conservative than other parameter-dependent quadratic 
stability concepts.  

As it has been indicated above, the next developments consider time-invariant uncertain systems, 
therefore parameter variation rate is not included. The following parameter-dependent Lyapunov 
matrix has been used in (Peaucelle et al. 2000, Ebihara Y. and Hagiwara T. 2002, Henrion et al. 
2002, Takahashi et al. 2002, Veselý 2003) and in this paper 

 ( ) ∑
=

=
N

i
iiPP

1
αα  (15) 

which has to be positive definite for all values of α such that ( ) SA ∈α  (see (7)). 

 
Lemma 3  (Takahashi et al. 2002) 
The continuous-time system (6) with the parameter-dependent Lyapunov matrix (15) is PDQS if 

 IAPPA viii
T
vi −<+ ,         0>iP ,   i = 1, 2,..., N (16) 

 I
N

APPAAPPA vjkk
T
vjvkjj

T
vk 1

2
−

<+++ ,  k = 1, 2,..., N – 1,     j = k+1,..., N (17) 

where I denotes identity matrix. 
  □ 
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Less conservative results can be obtained using the following modification of the Lemma 3. 

 

Lemma 4  (Veselý 2003) 
The continuous-time system (6) with the parameter-dependent Lyapunov matrix (15) is PDQS if 

 MAPPA viii
T
vi −<+ ,         0>iP ,  i = 1, 2,..., N (18) 

 M
N

APPAAPPA vjkk
T
vjvkjj

T
vk 1

2
−

<+++ ,   k = 1, 2,..., N – 1,   j = k+1,..., N (19) 

where 0>= TMM  is some positive definite matrix. 
  □ 

The following robust stability analysis approach for both continuous and discrete-time systems 
can be found respectively in (Henrion et al. 2002, Peaucelle et al. 2000). 

 

Lemma 5  (Henrion et al. 2002) 

The (6) with the parameter-dependent Lyapunov matrix (15) is PDQS if there exist a matrix F 
and matrices 0>= T

ii PP  satisfying the LMI 

 ( ) 0
2*

*

>
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−++
++−+

iivi

T
ivii

T
vivi

T

cPIPbFA
PbFAaPFAAF          i = 1, 2,..., N (20) 

within a stability region in the complex plane defined as 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
∈= 0

11
: *

*

scb
ba

s
CsD  (21) 

where the asterisk denotes the transpose conjugate. 
 □ 

Standard choices for D are the left half-plane (a = 0, b = 1, c = 0) or the unit circle 
(a = −1, b = 0, c = 1). Obviously, matrix F in (20) is stable. 

 

Lemma 6  (Peaucelle et al. 2000) 

The system (6) with the parameter-dependent Lyapunov matrix (15) is PDQS if there exist two 
matrices E, G and matrices 0>= T

ii PP  satisfying the LMI 

 0* <⎥
⎦

⎤
⎢
⎣

⎡

+−−+−
+−++

i
T

i
T

vi
T

i
T
vii

TT
vivi

cPGGPbEAG
bPEGAaPEAEA

         i = 1, 2,..., N (22) 

within a stability region D in the complex plane (21). 
□ 
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A general approach to the dilated characterizations in the continuous-time setting has been 
proposed in (Ebihara Y. and Hagiwara T. 2002). Its authors pursue the idea of introducing a new 
auxiliary variable to achieve decoupling between the Lyapunov variables and the controller ones 
(de Oliveira et al. 1999, Henrion et al. 2002). These nice and interesting features enable 
multiobjective and robust control in the face of real polytopic uncertainty using the non-common 
parameter-dependent Lyapunov function (15).  

The robust stability analysis results of (Ebihara Y. and Hagiwara T. 2002) are summarized in 
Lemma 7.  

 

Lemma 7  (Ebihara Y. and Hagiwara T. 2002) 
The continuous-time system (6) with parameter-dependent Lyapunov function (15) is PDQS if 
there exist 0>= T

ii PP  and a matrix G such that 

        ( ) ( ) ( )
( )

0
5.0

5.05.05.0
<⎥

⎦

⎤
⎢
⎣

⎡

−−−−+−
+−−−−+−+

T
vi

T
i

TT
viivi

TT
vii

GGIAGGP
GGIAPIAGGIAP    i = 1, 2,..., N (23) 

□ 

Following results for discrete-time systems provide LMI formulation of the robust stability 
condition avoiding the product of Avi and Pi (de Oliveira et al. 1999), which enables to use 
parameter dependent Lyapunov function.  

 

Lemma 8  (de Oliveira et al. 1999) 
The following conditions are equivalent: 

(i) There exists a symmetric matrix P > 0 such that 

 0<− PPAAT  (24) 

(ii) There exist a symmetric matrix P and a matrix G such that 

 0<⎥
⎦

⎤
⎢
⎣

⎡

+−−
−

PGGGA
GAP

T

TT

 (25) 

□ 

Lemma 9  (de Oliveira et al. 1999) 
Uncertain discrete-time system (5) with parameter-dependent Lyapunov matrix (15) is robustly 
stable within the uncertainty box (7) if there exist symmetric positive definite matrices 

0>= T
ii PP  and a matrix G such that 

 0>⎥
⎦

⎤
⎢
⎣

⎡

−+ i
T

vi

TT
vii

PGGGA
GAP

  i = 1, 2,..., N (26) 

 □ 
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3 NEW ROBUST STABILITY CONDITION FOR POLYTOPIC SYSTEMS 

In this section, new robust stability conditions for continuous-time and discrete-time polytopic 
system (6) with the parameter-dependent Lyapunov function (15) are developed. The main result 
for continuous-time system is stated in the following theorem. 

 

Theorem 1 
The continuous polytopic system (6) with the parameter-dependent Lyapunov function (15) is 
PDQS if there exist real scalar constants vij and matrices Pi such that 

 IvAPPA iiviii
T
vi −<+ ,  0>iP ,   i = 1, 2,..., N (27) 

 ( ) IvAPPAAPPA jkvkjj
T
vkvjkk

T
vj <+++

2
1 ,   j = 1, 2,..., N – 1,   k = j+1,..., N (28) 

where 0>iiv , 0≥= jiij vv  for all ji ≠  and  

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

NNN

N

vv

vv
V

L

MOM

L

1

111

 (29) 

is a negative definite matrix. 

 

Proof 
For A(α) and P(α) given by (7) and (15) respectively, the necessary and sufficient condition (8) 
can be rewritten as 

 0
1111

<+⎟
⎠

⎞
⎜
⎝

⎛ ∑∑∑∑
====

N

i
vii

N

i
ii

N

i
ii

TN

i
vii APPA αααα  (30) 

or equivalently 

 ∑ ∑∑
−

= +==

<+
1

1 11

2 02
N

j

N

jk
jkkj

N

i
iii NN ααα  (31) 

where 

 viii
T
viii APPAN += ,       i = 1, 2,..., N 

 ( )vkjj
T
vkvjkk

T
vjjk APPAAPPAN +++=

2
1 ,   j = 1, 2,..., N – 1,    k = j+1,..., N 

Applying assumptions (27) and (28) to the left hand side of (30) we obtain 

 αααααααα VvvINN T
N

j

N

jk
jkkj

N

i
iii

N

i

N

j

N

jk
jkkjiii =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−<+ ∑ ∑∑∑ ∑ ∑

−

= +===

−

= +=

1

1 11

2

1

1

1 1

2 22  (32) 

where [ ]N
T ααα K1=  and V is given by (29). 
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According to the last assumption in Theorem 1, V is negative definite, therefore 

 02
1

1

1 1

2 <<+∑ ∑ ∑
=

−

= +=

ααααα VNN T
N

i

N

j

N

jk
jkkjiii  (33) 

which proves the stability condition (30). Hence, assumptions (27), (28), (29) provide sufficient 
condition to (8), which completes the proof. 

  □ 

In the Lemma 3 and Lemma 4 the upper bounding matrices for all vertices (16) and (18) and 
edges (17) and (19) are given with the same constant unity matrix or positive definite matrix M, 
respectively. In the Theorem 1 for all vertices (27) and edges (28) the upper bounding matrices 
are calculated as different diagonal matrices vijI for Nji ,,2,1, K= . Therefore evidently, 
Theorem 1 encompasses the results of Lemma 3 and it may also relax the conditions of Lemma 4 
in the sense that there exist cases for which stability condition (27)-(29) is satisfied, while (18) 
and (19) not (see the results of calculations in Section 4). 

Note that, if PPPP N ==== L21 , the parameter dependent quadratic stability conditions of 

Lemma 3, Lemma 4 and Theorem 1 reduces to quadratic stability conditions. 

The results on robust stability of discrete-time system in Section 2 (Lemmas 7 and 8) are 
efficient for analysis as well as for state feedback controller design. However, in the case that 
static output feedback is to be designed - the product of Avi and G appearing in Lemma 9 should 
be avoided so that the respective matrix inequality remains linear. 

A new robust stability LMI condition for discrete-time systems that does not include a product of 
the system matrix with other unknown matrix is formulated in the following theorem. 

 

Theorem 2 
Uncertain discrete-time system (6) with the parameter-dependent Lyapunov function (15) is 
PDQS if for some T

ii DD =  there exist symmetric positive definite matrices 0>= T
ii PP  and a 

matrix Z satisfying LMI 

 0
0

2
0

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−
−

−

i
T

i
T

T
iivi

T
vii

PZZDZ
ZDDA

AP

ρ
ρρ  i = 1, 2,..., N (34) 

where 0>ρ  is a real constant. 

 

Proof 
The proof is analogous to (Rosinová and Veselý 2003) where the sufficient stability condition 
for discrete-time polytopic system with output feedback was provided. 
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Theorem 2 comprises the results stated in Lemmas 7 and 8, and inequality bounds on P-1. 
Lemma 8 provides a hint how to avoid the product of matrices X and Y in LMI form of the term 
( YYXX T − ). 

The bound on P-1 follows from the inequality 

 0)()( 11 ≥−− −− PDPPD T ρ
ρ

ρ  (35) 

that holds for any matrices P=PT>0, D=DT and a real scalar 0>ρ . From (35) we obtain the 

upper bound on ( 1−− P ) used in the following developments 

 DPDDP 2
1 12

ρρ
+−≤− −  (36) 

Now, let us prove the implication (34) ⇒  (9). Right-multiplying the inequality (34) by 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
= T

iDI
I

T
ρ
10

00
 and left-multiplying it by TT we obtain 

 012
2

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−

−

ii
T
iivi

T
vii

DPDDA

AP

ρρ
 (37) 

Joining inequalities (35) and (36) yields 0<− ivii
T
vi PAPA , which proves  (34)⇒ (9) for one 

index i. Hence, to prove stability of the overall system it is sufficient to find the parameter-
dependent Lyapunov function (15) such that (34) holds for )( ),( αα PA  and some D(α). As (34) 

is linear with respect to Pi, Avi, D, multiplying (34) by the related scalar αi for each i and 

summing through all i=1,..., N whereby considering that ∑
=

=
N

i
i

1
1α , yields 

 

( ) ( )
( ) ( ) ( )

( ) ( )

0

10

12
0

<

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−−

−

−

αα
ρ

α
ρ

α
ρ

α

αα

PZZDZ

ZDDA

AP

TT

T

T

  (38) 

for ( ) ∑
=

=
N

i
ii DD

1

αα . 

Due to previous arguments inequality (38) implies (9) which completes the proof. 
□ 

There still remains open question, since either matrix Z or matrices Di together with free scalar 
parameter ρ are to be chosen. We consider Z as unknown matrix to be calculated, Di and ρ are 
given. We used in our calculations ρ = 5, initial choice of matrices 1

0
−= ii PD ρ  where Pi0 are the 
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solutions of Lyapunov equation in the respective vertices, and in the case that no feasible 
solution to (34) was obtained, the following iterative procedure is applied taking the next value 
of 1−= ii PD ρ . 

Note that for PPPP N ==== L21  (34) is equivalent to quadratic stability condition (11) under 

the assumption 1−= PD ρ . 

Obviously, for the sake of mere analysis the described procedure can be considered as 
inefficient, however in the case of output feedback design, the proposed condition is directly 
applicable in the presented form since the system matrix does not appear in any product, 
therefore output feedback gain matrix can be included into the set of unknown matrices without 
violating the linearity of matrix inequality (34). This feature distinguishes our condition from 
other ones listed above. Conditions given in Lemmas 5, 6 or 9 all include product of the system 
matrix with unknown matrix (F, E and G respectively), therefore could be directly applied for 
output feedback design only if the respective unknown matrix is selected in some way. 

All the above described stability analysis methods provide sufficient stability conditions which 
naturally suggests the question of their conservatism. The respective qualities of the individual 
methods are illustrated in the next section. 

 

4 EXAMPLES 

4.1 Method of evaluation  

In this section the properties and power of individual methods presented in Sections 2 and 3 have 
been tested on several benchmark examples as well as on 1000 randomly generated ones. To be 
able to evaluate the conservatism of each particular method, the term ‘stability region size’ has 
been adopted. In each tested example, it has been measured in terms of the parameter q 
corresponding to the maximum uncertainty polytope for which the uncertain system still remains 
stable.  

The motivation for the adopted approach corresponds to the robust control design task in the 
following interpretation.  

Consider an uncertain affine linear system 

 ( ) ( ) ( )uBxAx Θ+Θ=δ  (39) 

where mRu∈  is the input vector 

 ( ) mn
pp RBBBB ×∈Θ++Θ+=Θ L110 . (40) 

Consider the static output feedback 

 KCxKyu ==  (41) 

where lRy∈ , nlRC ×∈  are output variable and output matrix of the linear system (39), 
respectively.  
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The corresponding closed loop system is then 

 ( ) ( ) ( )( ) ( )xAxKCBAx c Θ=Θ+Θ=δ  (42) 

In the sequel we assume that the affine model is recalculated so that all uncertainties in (42) are 
non-dimensional and normalized so that 

 ppq Θ=Θ==Θ=Θ= L11 , (43) 

Ak in (1) and Bk in (40), k = 0, 1, 2,..., p  are constant. 

The matrices Ak and Bk, k = 0, 1, 2,..., p  were created considering q = 1, that is 1−=Θi  and 

1=Θi , i = 1, 2,..., p. In the assessment of the considered stability conditions the polytope 

vertices are computed for different q, but the matrices Ak and Bk remain fixed. It is important to 
note that uncertainties are normalized into the same scale (-1,1) and scalar parameter q is without 
physical dimension to enable better assessment of the considered methods. 

In this case, the closed loop robust stability analysis problem can be extended as a question may 
arise about ‘how robust’ the closed loop with the considered controller is: 

What is the maximum range for uncertainty parameter q such that the closed loop affine 
uncertain system (42) remains stable?  

This section provides numerical examples, the results have been tested, and thoroughly evaluated 
and compared with respect to the eight continuous-time and four discrete-time robust stability 
conditions presented in Sections 2 and 3.  

The following test has been applied: first, all considered methods were tested on four 
continuous-time and one discrete-time models of real plants taken from references; then for the 
continuous-time case, 1000 affine stable closed loop systems (42) were generated considering 
q = 1 and the pairs (n = 3, p = 2), (n = 5, p = 2) and (n = 5, p = 3); finally, in each example, the 
maximum value of the uncertainty parameter q was evaluated for each considered robust stability 
condition, while the matrices Ak and Bk, k = 0, 1, 2,..., p are constant. Similarly, for the discrete-
time case, 1000 affine stable closed loop systems (42) were generated. 

The obtained results have been evaluated as follows:  

1. For each example, all methods were arranged according to the maximum value of the 
uncertainty parameter q (qmax = max(q)) and number of points assigned with respect to 
their rating (the highest value of qmax -  best rating = 1 point, ... etc.), i.e. the fewer points, 
the better rating of the respective method.  

2. For each method, the mean value qm of all maximum uncertainty parameters qmax obtained 

in the considered examples was computed ( ( ) 10001000

1 max∑ =
=

rm qq ), and the methods were 

arranged according to decreasing values of qm. Hence, in this case, the higher value of qm, 
the better rating of the respective method. 

3. For each generated continuous-time and discrete-time example and for all methods, the 
percentage of appearance of each point (assigned with respect to their rating) was 
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computed. This criteria illustrates the relative success of particular method in more details 
– the whole scale of point distribution is shown. 

These three proposed criteria have been chosen due to their obvious interpretation. While the 
first criterion evaluates the method’s rating (‘the fewer points – the better method’), the second 
one estimates the ‘size’ of the stability region (‘the higher qm – the better method’) and the third 
one evaluates percentage of appearance of each point assigned according to the maximum value 
of the uncertainty parameter q. 

Note, that if a particular method achieves the best rating it is assigned one point, if two methods 
both achieve the best rating, both of them are assigned one point, however, the next method is 
assigned 3 points, etc. 
 

4.2 Results for real plants 

Example 1 
Consider a decentralized MIMO PI controller to be designed for the linear continuous-time 
model of a laboratory plant comprising two cooperating DC motors. The plant model is given by 
(39) and (41) with p = 2, n = 10. The entries of matrices (39) and of the gain matrix K were taken 
from (Veselý 2002: Example 4)  

 ⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

4227.001924.20
02346.002922.1

K . 

The robust stability analysis results of are summarized in Table 1. 

Table 1 
Method AQ VES PEAU EBI HEN MTAKA Q TAKA 

Rating 1 2 2 4 5 6 7 8 

qmax 2.4625 2.4609 2.4609 2.4305 2.3484 2.1852 2.0289 1.1844 

 
where the above acronyms have the following meaning  
AQ − affine quadratic stability (Gahinet et al. 1996), Lemma 2 
VES − Parameter dependent quadratic stability proposed in this paper, Theorem 1 
PEAU − Parameter dependent quadratic stability (Peaucelle et al. 2000), Lemma 6 
EBI − Parameter dependent quadratic stability (Ebihara Y. - Hagiwara T. 2002), Lemma 7 
HEN − Parameter dependent quadratic stability (Henrion et al. 2002), Lemma 5 
MTAKA − Parameter dependent quadratic stability modified in this paper, Lemma 4 
Q − quadratic stability (Boyd et al. 1994), Lemma 1 (a) 
TAKA − Parameter dependent quadratic stability (Takahashi et al. 2002), Lemma 3 
qmax − maximum value of the uncertainty parameter q  
 

Example 2 
Model of this plant has been borrowed from (Benton et al. 1999), whereby p = 2, n = 4 and the 
gain matrices are 
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 ⎥
⎦

⎤
⎢
⎣

⎡
=

7664.3
8107.0

1K  ⎥
⎦

⎤
⎢
⎣

⎡−
=

8187.2
538.1

2K  

The robust stability analysis results for K1, K2 are in Table 2. 

Table 2 
Gain Method AQ VES PEAU EBI HEN MTAKA TAKA Q 

Rating 1 1 1 1 1 6 7 8 
K1 qmax 1.7789 1.7789 1.7789 1.7789 1.7789 1.7578 1.5688 1.1844

Rating 1 1 1 1 7 5 6 8 
K2 qmax 14.073 14.073 14.073 14.073 10.656 14.031 13.668 6.5719

 
Example 3 
The real plant model has been borrowed from (Veselý 2002: Example 2) with p = 1, n = 3 and 
the gain matrix 949.1=K . The robust stability analysis results are in Table 3. 

Table 3 
Method AQ VES PEAU EBI MTAKA HEN TAKA Q 

Rating 1 1 1 4 5 6 7 8 

qmax 7.3609 7.3609 7.3609 7.2242 7.2188 6.8430 6.2273 4.8828 

 

Example 4 
The real plant model has been borrowed from (Takahashi 2002) with p = 1, n = 3 and the gain 
matrix 
 [ ]009.36109.04718.2 −−−=K . 

The robust stability analysis results are in Table 4. 

Table 4 
Method AQ VES PEAU MTAKA TAKA HEN EBI Q 

Rating 1 1 1 4 5 6 7 8 

qmax 1.0469 1.0469 1.0469 1.0234 0.8023 0.7898 0.6461 0.3305 

 

Example 5 (discrete-time system) 
For the discrete-time case, the real plant model has been taken from (Rosinová and Veselý 2002) 
with p = 2, n = 3 and the gain matrix 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

7738.28589.0
9563.83276.2

K  

The robust stability analysis results are in Table 5. 

Table 5 
Method OLI HEND QD D-V 

Rating 1 1 1 4 

qmax 1.4234 1.4234 1.4234 1.4227 
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where the above acronyms have the following meaning  
OLI − Parameter dependent quadratic stability proposed in (Oliveira et al.1999), Lemma 9 
HEND − Parameter dependent quadratic stability proposed in (Henrion et al. 2002), Lemma 5 
QD − quadratic stability (Boyd et al. 1994), Lemma 1 (b) 
D -V − Parameter dependent quadratic stability proposed in this paper, Theorem 2 
qmax − maximum value of the uncertainty parameter q 

 

4.3 Results for generated examples 

For a continuous-time case, 1000 stable closed loop affine systems were generated for the pairs 
(n = 3, p = 2), (n = 5, p = 2) and (n = 5, p = 3). The results have been evaluated as explained in 
Section 4.1. 
Results obtained for the above-considered pairs are summarized in Table 6, Table 7 and the 
corresponding charts are in Fig. 1, Fig. 2 and Fig. 3. 

Table 6 
p n  AQ VES PEAU MTAKA HEN EBI TAKA Q 

Rating 1.05 1.14 1.20 2.63 2.47 3.75 6.62 6.08 

qm 2.96 2.92 2.92 2.91 2.84 2.61 2.89 2.25 3 

σs 1.65 1.60 1.60 1.60 1.53 1.22 1.60 1.31 

Rating 1.07 1.15 1.24 2.71 2.68 4.56 6.34 7.13 

qm 1.98 1.96 1.96 1.96 1.89 1.73 1.92 1.33 

2 

5 
σs 0.88 0.86 0.86 0.86 0.80 0.60 0.86 0.70 

Rating 1.04 1.22 1.38 3.27 3.21 5.08 6.11 7.39 

qm 1.62 1.60 1.60 1.60 1.55 1.43 1.58 1.09 3 5 
σs 0.57 0.56 0.56 0.56 0.52 0.38 0.56 0.46 

where rating, qm (mean value of maximum uncertainty parameter qmax) and standard deviation σs 
have been calculated from the 1000 robust stability analysis assessments.  
 

  

 

 

 

 

 

 

 

 
 

Fig. 1 – Result of robust stability evaluation 
                  in terms of rating  

(‘the lower value – the better method’) 

Fig. 2 – Result of robust stability evaluation 
                 in terms of  qm 
 (‘the higher value – the better method’)
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Table 7 – Average percentage of appearance of each point for all generated examples 
Points AQ VES PEAU MTAKA HEN EBI TAKA Q 

1 98.10 85.47 83.53 46.03 60.57 39.93 0.067 14.03 

2 0.300 12.43 11.27 6.600 4.133 1.033 0 0.767 

3 0.400 1.833 1.100 3.733 0.067 0.100 0.267 0 

4 0.600 0.167 2.200 17.53 1.300 0.933 2.267 0.033 

5 0.500 0.067 1.900 13.43 6.267 3.933 19.47 0.033 

6 0.033 0.033 0 9.667 20.47 7.967 30.10 0.533 

7 0.067 0 0 3.000 7.200 35.80 34.63 9.233 

8 0 0 0 0 0 10.30 13.20 75.37 

 
Percentage of appearance of each point have been calculated from the 3000 robust stability 
analysis assessments.  

 

 

 

 

 

 

 

 

 

 

 

 
For continuous-time systems, the affine quadratic criterion is undoubtedly the less conservative 
for all three pairs: AQ criterion has obtained a minimum of points, i.e. AQ evaluation of 3000 
affine systems achieves the best rating in 98.1 %. The second place goes to the criterion 
proposed in this paper, taking the best rating in 85.5 %. The VES and PEAU criteria provide 
similar results. The Q criterion has achieved only the two best and the two worst rating positions. 
When the affine system has become more complex (increased n and p ) the quadratic stability 
criterion has moved to a lower place, and the rating has changed from 6.08 to 7.39. On the 
contrary, the TAKA criterion’s rating has changed from 6.62 to 6.11 and almost does not achieve 
the three best rating positions. MTAKA, HEN, EBI and PEAU criteria have become more 
conservative when the affine system has got more complex. It is noteworthy that for all cases, 
the HEN and MTAKA criteria provide similar results and are less conservative, than the EBI 
criterion. From a more detailed investigation of Table 6 it is evident that for the TAKA criterion 
the mean value qm is larger than for the HEN and EBI criteria, even though according to the 
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rating, the two latter methods are superior. This contradiction is due to the different value of the 
standard deviation σS. For the third case (p = 3, n = 5), the standard deviation values σS are given 
in Table 6 showing that for some examples, the TAKA criterion may provide larger values of q 
or less conservative results than the HEN and EBI criteria. On the average, for 3000 generated 
affine systems the TAKA criterion is more conservative than the other six criteria based on the 
parameter-dependent Lyapunov function. 

 
For the discrete-time case, 1000 stable closed loop affine systems were generated for the pairs 
(n = 3, p = 2), (n = 5, p = 2) and (n = 5, p = 3). Results are summarized in Table 8, Table 9 and 
the corresponding charts are in Fig. 4, Fig. 5 and Fig. 6. 

Table 8 
p n  QD HEND OLI D-V 

Rating 3.66 2.14 1.46 2.25 

qm 0.92 1.18 1.30 1.28 3 

σs 0.35 0.45 0.37 0.37 

Rating 3.46 3.08 1.29 1.89 

qm 0.74 0.67 1.20 1.14 

2 

5 
σs 0.28 0.58 0.31 0.30 

Rating 3.97 1.46 1.72 2.53 

qm 0.78 1.21 1.20 1.18 3 5 
σs 0.23 0.26 0.25 0.24 

 
Rating, standard deviation σs and qm have analogical meaning as in the continuous-time case 
(Tab.8). 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 – Result of robust stability evaluation 
                 in terms of rating 
 (‘the lower value – the better method’) 

Fig. 5 – Result of robust stability evaluation 
                 in terms of  qm 
 (‘the higher value – the better method’)
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Table 9 – Average percentage of appearance of each point for all generated examples 
Points QD HEND OLI D-V 

1 2.767 45.17 62.87 17.23 

2 0.800 8.033 25.33 45.03 

3 20.33 25.90 11.80 35.83 

4 76.10 20.90 0 1.900 

 
Percentage of appearance of each point have been calculated from the 3000 robust stability 
analysis assessments. 

 

 

 

 

 

 

 

 

 

 

 

 

For discrete-time systems, all three parameter-dependent methods (OLI, HEND, D-V) surpass 
the quadratic stability criterion as expected. The OLI criterion provides the best results in most 
cases besides the γ case (p = 3, n = 5), where HEND is better, as shown in Fig.6. Results 
obtained by HEND and D-V criteria vary from case to case (for p = 2, n = 5, D-V is better than 
HEND, in the remaining two cases HEND provides better results than D-V). Notice in Tab.9 that 
D-V method appears on the ‘worst’ position (4 points rating) only in 1.9% of generated 
examples while HEND in 20.9%. Therefore there exists quite significant set of examples where 
D-V surpasses HEND.  It should be also noted that the D-V criterion proposed in this paper can 
be is appropriate for the output feedback design, while the OLI criterion can be directly applied 
just for the state feedback design. Therefore it is believed that the obtained results illustrate the 
ability of the D-V criterion to successfully compete with the other ones.  

 

5. CONCLUSIONS 

The paper provides a numerical comparison of several robust stability analysis methods based on 
LMI conditions and parameter-dependent Lyapunov functions for both continuous and discrete-

Fig. 6 – Percentage of appearance of points assigned to presented methods 
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time systems, and proposes new robust stability conditions for continuous and discrete-time 
polytopic systems. The developed stability conditions are appropriate for output feedback design. 
According to our comparative test, the robust stability criterion developed for continuous-time 
systems provides less conservative results when compared with several recent parameter-
dependent Lyapunov methods. Obtained results prove that the affine quadratic stability criterion 
is the least conservative for all considered examples and cases. However, the affine quadratic 
stability criterion is more complex to be applied for static output feedback design in comparison 
with other parameter dependent Lyapunov function methods.  

The D-V stability criterion proposed for discrete-time systems is based on dilation of the LMI 
characterization and can be directly used for the output feedback control design (Rosinová and 
Veselý 2003). The comparison of the considered discrete-time stability criteria favours the OLI 
criterion, which, however, is not appropriate for output feedback design. The D-V provides 
results, which in some cases surpass those of HEND and is believed to contribute to the family 
of LMI stability results for polytopic discrete-time systems. 

Thorough analysis of several recent robust stability criterions is given that can help to assess and 
choose the least conservative method of stability analysis for output feedback controller design. 
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