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Abstract: In this paper, several numerical experiments are performed in order to 
compare five methods based on linear matrix inequalities conditions and parameter-
dependent Lyapunov functions for continuous-time systems. Numerical examples 
thoroughly illustrate the power of the considered robust stability analysis methods and 
show which one provides the less conservative results. 
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1 INTRODUCTION 

Robustness has been recognized as a key issue in the 
analysis and design of control systems during the last 
two decades. The field of robust control methods 
with small-gain-like robustness conditions started 
with the pioneering work of Zames (Zames 1981) 
where the consequence of the robust control 
paradigm yielded the definition of the control design 
problem as an optimization problem. Only at the end 
of 80's a practical solution to this problem was found 
in (Doyle 1989, Fans 1991).  

This paper belong to the Lyapunov class of methods 
and LMI one (Boyd et al. 1994). The convex 
polytope-type uncertainty description of uncertain 
systems found a natural framework for it's 
accounting in the LMI's formalism. The basis for 
LMI stability analysis condition of such system is 
termed by quadratic stability. A weakness of 
quadratic stability is that it guards against arbitrary 
fast parameter variations and therefore is based on 
the use of a single Lyapunov function for testing 
stability over the whole uncertainty box. To reduce 
conservativism of quadratic stability for polytopic 
system the parameter dependent Lyapunov function 
has been introduced (Gahinet et al. 1996, Henrion et 
al. 2002, Takahashi et al. 2002) for the robust 
stability analysis of continuous systems.  

 

 

This work deals with the comparison of numerical 
results obtained from the robust stability analysis 
with different parameter-dependent Lyapunov 
functions and continuous-time systems. 

2 PROBLEM FORMULATION                        
AND PRELIMINARIES 

This paper is concerned with the class of uncertain 
linear system that can be described as 

   ( ) ( ) ( )xAxAAAAx pp Θ=Θ++Θ+Θ+= L22110δ  (1) 

where nRx∈ , [ ] p
p R∈ΘΘ=Θ K1

 is the state vector 

and vector of uncertain and possible time varying 
parameters, δ(.) denotes the derivative operator, 

       jjj ΘΘ∈Θ , , jjj rr ,∈Θ& ,  j = 1, 2,..., p (2) 

where jjjj rr ,,,ΘΘ  are known lower and upper 

uncertainty bounds. Let Γ and Λ denote the sets of 
corners of the parameter box (2) and of the rate of 
variation box (2), respectively 
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denote the average value of the vector uncertain 
parameters. 

The system represented by (1) is a polytope of linear 
affine systems, which can be described by a list of its 
vertices 

     ( ) xAx vi=δ ,      i = 1, 2,..., N (5) 

where N = 2p. 

The linear uncertain system (5) belongs to a convex 
polytopic set defined as 
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Using Lyapunov stability it is possible to give the 
following definition. 

 

Definition 1: 

System (6) is robustly stable in the uncertainty 
domain (7) if and only if there exists a matrix 
( ) ( ) 0>= TPP αα  such that 

                ( ) ( ) ( ) ( ) 0<+ αααα APPA T , (8) 

for all α such that ( ) SA ∈α . 

□ 

There is no general and systematic way to formally 
determine P(α) as a function of A(α) and uncertain 
parameter α. Such a matrix P(α) is called a 
parameter-dependent Lyapunov matrix and for 
concrete structure of P(α) the inequality (8) defines 
the parameter dependent quadratic stability (PDQS). 
Effective way to choose P(α) is to look for a single 
Lyapunov matrix P(α) = P. The latter case is 
analyzed in the following lemma. 

 

Lemma 1: 

Uncertain system (6) is robustly quadratically stable 
in the uncertain domain (7) if and only if there exists 
a matrix 0>= TPP  such that 

                         0<+ vi
T
vi PAPA , (9) 

for all i = 1, 2,..., N. 
□ 

Unfortunately, this approach generally provides quite 
conservative results. To reduce the conservativism 
when (1) is affine in Θ and the system parameters are 
time invariant, in (Gahinet et al. 1996) the 

parameter-dependent Lyapunov function P(Θ) has 
been used in the form 

           ( ) ppPPPPP Θ++Θ+Θ+=Θ L22110
 (10) 

Due to (Gahinet et al. 1996) the sufficient affine 
quadratic stability conditions are given by the next 
lemma. 

 

Lemma 2: 

Consider the linear systems governed by (1) and 
parameter-dependent Lyapunov function (10). The 
continuous-time system (1) is affine quadratically 
stable if A(Θm) is stable and there exist p+1 
symmetric matrices 

pPPP ,,, 10 K  such that ( ) 0>ΘP  

satisfies 
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for all ( ) Λ×Γ∈×λγ  and 

                     0≥++ jjjj
T
j MAPPA  (12) 

for all j = 1, 2,..., p, where 0≥= T
jj MM  are some 

nonnegative definite matrices. 
□ 

Affine quadratic stability encompasses quadratic 
stability but it can be more conservative than other 
parameter-dependent quadratic stability. In (Henrion 
et al. 2002, Takahashi et al. 2002) and in this paper 
the following parameter-dependent Lyapunov matrix 
has been used 
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which has to be positive definite for all values of α 
such that ( ) SA ∈α . 

 

Lemma 3: (Takahashi et al. 2002) 

System (6) with parameter-dependent Lyapunov 
matrix (13) is PDQS if 

       IAPPA viii
T
vi −<+ ,  0>iP ,  i = 1, 2,..., N (14) 

          I
N

APPAAPPA vjkk
T
vjvkjj

T
vk 1

2
−

<+++ ,   (15) 

            k = 1, 2,..., N – 1,  j = k+1,..., N  

where I is identity matrix. 

□ 

The following robust stability analysis can be found 
in (Henrion et al. 2002). 

 



Lemma 4: 

System (6) with parameter-dependent Lyapunov 
matrix (13) is PDQS if there exists a matrix F and 
matrices 0>= T

ii PP  satisfying the LMI 
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is a stability region in the complex plane and the star 
denotes transpose conjugate. 

□ 

Standard choice for D is the left half-plane 
(a = 0, b = 1, c = 0). Obviously matrix F in (16) is 
stable. 

In the paper (Yoshia Ebihara and Tomomichi 
Hagiwara 2002) the authors have proposed a general 
approach to the dilated characterizations in the 
continuous-time setting. The proposed method 
pursues the idea of (Henrion et al. 2002) to introduce 
a new auxiliary variable to achieve decoupling 
between the Lyapunov variables and the controller 
variables. These nice and interesting features enable 
us to deal with multiobjective and robust control for 
real polytopic uncertainty with the use of non-
common and parameter-dependent Lyapunov 
function (13). The results of (Yoshia Ebihara and 
Tomomichi Hagiwara 2002) for robust stability 
analysis are summarized as follows. 

 

Lemma 5 

System (6) with parameter-dependent Lyapunov 
function (13) is PDQS if there exist 0>= T

ii PP  and a 
matrix G such that 
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3 EXAMPLES 

3.1 Method evaluation concept 

In this section the qualities and power of particular 
methods provided in Sections 2 is tested on 500 
random generated affine stable closed loop systems. 
To evaluate the conservativeness of the methods, we 
adopt “the size of stability region” for each tested 
example measured by the parameter q respective to 
maximal polytope of uncertainties for which the 

uncertain system remains stable. The motivation to 
the adopted approach can be given considering the 
robust control design task in the following 
interpretation. 

Consider an uncertain affine linear system 

                     ( ) ( ) ( )uBxAx Θ+Θ=δ  (19) 

where mRu∈  is input vector 

 ( ) mn
pp RBBBB ×∈Θ++Θ+=Θ L110

. 

For the static output feedback 

                            KCxKyu ==  (20) 

where lRy∈ , nlRC ×∈  is output variable and output 
matrix of linear system (19) respectively, the closed 
loop system of (19) is 

               ( ) ( ) ( )( ) ( )xAxKCBAx c Θ=Θ+Θ=δ . (21) 

In this case the close loop robust stability analysis 
problem can be extended and the question arises 
“how robust” the considered controller is: 

What is the maximal range of uncertainty parameters 
so that the close loop affine uncertain system (21) 
remains stable? 

          
pq Θ==Θ=Θ= maxmaxmax 21 L . (22) 

In this section exhaustive numerical examples are 
given for evaluation and comparison of the above 
described five robust stability conditions. The 500 
affine stable closed loop systems (21) were generated 
for 1;1−∈Θ j

,  j = 1, 2,..., p and each pair (n = 3, 

p = 2), (n = 5, p = 2) and (n = 5, p = 3). Maximal 
value of uncertain parameter q respective to each of 
the considered robust stability conditions was 
computed for each example. 

The summary comparison of the considered methods 
is provided in accordance with the following criteria: 
The mean value of uncertainty parameter qm reached 
in considered 500 examples was computed for each 
method and the methods were ordered with the 
decreasing value of qm. 

 

3.2 Generated examples 

For a case 500 affine stable closed loop system were 
generated for the following pairs (n = 3, p = 2), 
(n = 5, p = 2) and (n = 5, p = 3). The results are 
evaluated according to the concept explained in 
Section 3.1. 

For the defined pairs the obtained results are 
summarized in the Table 1 and the corresponding 
Fig. 1. 

 

Table 1 



p n  AQ HEN EBI TAKA Q 

Place index 1.02 1.64 2.41 3.67 3.84 

qm 3.02 2.91 2.67 2.95 2.32 3 

σs 1.66 1.56 1.25 1.62 1.36 

Place index 1.02 1.70 2.62 3.41 4.44 

qm 1.96 1.86 1.73 1.89 1.35 

2 

5 
σs 0.91 0.85 0.67 0.91 0.70 

Place index 1.00 1.88 2.96 3.08 4.61 

qm 1.61 1.55 1.43 1.57 1.09 3 5 
σs 0.57 0.52 0.38 0.56 0.46 

 

where the above acronyms read as follows 
AQ − affine quadratic stability (Gahinet et al. 
  1996), Lemma 2 
EBI − Parameter dependent quadratic stability 
  proposed in (Yoshia Ebihara and  
  Tomomichi Hagiwara 2002), Lemma 5 
HEN − Parameter dependent quadratic stability 
  proposed in (Henrion et al. 2002), 
  Lemma 4 
Q − quadratic stability, see (Boyd et al. 1994), 
  Lemma 1 
TAKA − Parameter dependent quadratic stability 
  proposed in (Takahashi et al. 2002), 
  Lemma 3 
 
The place index, mean value qm of the uncertainty q 
and standard deviation σs correspond to the mean 
values obtained from 500 robust stability analysis 
calculations. Note that for particular affine system if 
the concrete method took the first place it has got one 
point, if two methods took first place both have got 
one point and then the next method has got 3 points, 
etc. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

4 CONCLUSION 

This paper has presented a numerical comparison 
among five methods based on LMI conditions and 
parameter-dependent Lyapunov functions. The 
results show that the affine quadratic criterion is 
undoubtedly the less conservative for all three cases. 

When the affine system becomes more complex (n 
and p increases) quadratic stability criterion moves to 
lower place, the place index changes from 3.84 to 
4.61. Criterion TAKA moves in the opposite 
direction, the place index changes from 3.67 to 3.08. 
Criterions Q, HEN, EBI become more conservative 
when the affine system becomes more complex.  
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Fig. 1 – The result of robust stability calculation
             for value of place index 
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