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Abstract: The paper addresses the design of a robust output feedback controller for SISO
systems using extremal transfer functions and the classical control theory approach. It
focuses on robust stabilization of uncertain plants, which belong to linear or multilinear
uncertain systems. A survey on extremal transfer functions is given and it is shown that
for the proposed robust controller design procedure the classical linear control theory can
be applied providing necessary and sufficient or sufficient stability conditions. Copyright
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1. INTRODUCTION

Robustness has been recognized as a key issue in the
analysis and design of control systems for the last
two decades.

The main criticism formulated by control engineers
against modern robust analysis and design methods
for linear systems concerns the lack of efficient,
easy-to-use and systematic numerical tools. Indeed, a
lot of analysis techniques and most of the design
techniques for uncertain systems boil down to non-
convex bilinear matrix inequality (BMI) problems,
for which no polynomial-time algorithm has been
proposed so far (Henrion, et al., 2002). This is
especially true when analysing robust stability or
designing robust controllers for MIMO systems
affected by highly structured uncertainties, or when
seeking a low order or a given order robust
controller.

In this paper we focus on the problem of robust
stabilization of an uncertain single input — single
output plant, which belongs to linear or multilinear
interval systems. A survey on extremal transfer
functions is given and it is shown that for the robust
controller design procedure the classical linear

control theory can be applied with necessary and
sufficient or sufficient stability conditions.

Even though significant progress has been made
recently in the field of analysing robust stability for
parametric uncertain systems, the robust controller
design procedure is still an open problem. Indeed, in
(Bhattacharyya, et al., 1995) it is pointed out that a
significant deficiency of the control theory is lack of
no conservative robust controller design methods.
Recent developments in the robust control of systems
with parametric uncertainty have been inspired by
the Kharitonov Theorem (Kharitonov, 1979). By
means of this theorem it is sufficient to determine
stability only of four Kharitonov polynomials.
Kharitonov’s theorem has been generalized for the
control problem (Chapellat, Bhattacharyya, 1989).
The Generalized Kharitonov Theorem shows that for
a compensator to robustly stabilize the system it is
sufficient if it stabilizes a prescribed set of line
segments in the plant parameter space. Under special
conditions on compensator it is sufficient to stabilize
the Kharitonov vertices. The next important
substantial progress in the robust analysis of
parameter stability is the Edge Theorem (Bartlett, et
al., 1988). The Edge Theorem allows to
constructively determine the root space of a family of



linearly parametrized systems. There are situations
when several linear interval systems are connected in
series. In such a case the global control object is
considered to belong to a multilinear systems class
(Chapellat et al., 1994). The main tool to approach
this problem is the Mapping Theorem (Hollot, Xu,
1989) which shows that the image set of multilinear
interval polynomials is contained in the convex hull
of the vertices.

2. PROBLEM STATEMENT

Consider the transfer function

6(s)= B &)

where Pl(s), Pz(s) are linear or multilinear interval

polynomials with respect to parametric uncertainty
described in the parameter box uncertainty Q.

The problem studied in this paper can be formulated
as follows: For a continuous time system described
by the transfer function (1) the robust controller

R(s)= F(s) 2

is to be designed with fixed polynomials £(s), F,(s)
such that for the closed loop system

R(s)F(s) 3)
B(s)F;(s)+ P (s)F (s)

robust stability (RS) and a specified
performance (RP) are guaranteed.

G.(s)=

robust

3. EXTREMAL TRANSFER FUNCTIONS

3.1 Linear interval case

We will deal with characteristic polynomials of the
form

Als) = F(s)B(s)+ F,(s)P,(s) @)
where
B(s)=po, + pys+-+p, 5" i=12 )

Each P(s) is a linear interval polynomial specified
by the intervals

puelp, p) =120 j=00.m  (6)
The corresponding parameter box is then
O={pip, <P <pi=12j=08...nf )
and the global parameter uncertainty box is given
0=0,%0, )

where p,-T :[po,i D "‘pn,,i]’ i=12.

Following assumptions about the linear interval
polynomials are considered:

1) Elements of p;i =12 perturb independently of
each other. Equivalently, Q is a n; +n, axis
parallel rectangular box.

2) All characteristic polynomials (4) are of the
same degree.

According to (Bhattacharyya, et al., 1995) the
stability problem of (4) can be solved using the
Generalized Kharitonov Theorem.

Theorem 1. (Chapellat, Bhattacharyya, 1989)
Foragiven F(s)=(F(s), F,(s)) of real polynomials:
1) F(s) stabilizes the linear interval polynomials
P(s)=(B(s),B(s)) for all peg@ if andonly if
the controller stabilizes the extremal transfer
function

G,(s)= {Kl(s) U 51(5)} (9)

SZ(S) KZ(S)

2) Moreover, if the polynomials of the controller
Fi(s), i =1,2 are of the form

F;'(S):S" (ais+bi)Ui(s)Zi(S) (10)

then it is sufficient that the controller F(s)
stabilizes the Kharitonov transfer function

G, (s) = Kalo) (11)

3) Finally, stabilizing (11) is not sufficient to
stabilize P(s)=(R(s),B(s)) when the controller

polynomials Fi(s), i=12, do not satisfy the

condition (10)
O
where

K ()= {K16) K26 K26 K6 (12

stand for Kharitonov polynomials (Kharitonov, 1979)
corresponding to each Py(s)

s,(s)=1&t &2} [k, &2 k2, &) K2 K] (13)

are the four Kharitonov segments for corresponding
P{s); U(s) is an anti-Hurwitz polynomial, Z(s) are
even or odd polynomials, a;, b; are real positive
numbers and ¢, >0.

Note: §! = K} (s)+ ({1~ 2)K (s), 2€(0,1)

3.2 Linear affine case

Let the transfer function (1) can be rewritten in the
following affine form

P

+ 21: '1(5)‘11'
Z(S)qi

P,

-

(14)

0,1(3) 4
BO) )+ 3r

i=1

R



where P;q(s), Pio(s) for j=0,1,2,..,p are real
polynomials with constant parameters and the
uncertain parameter ¢; belongs to the interval

qi E<&, q71>, i= 1, 2, e P

The system represented by (14) is apolytope of
linear systems, which can be described by a list of its
vertices

Gy, (s) =

Pa) 12 N N=20  (15)

Pvz,j N
computed for different permutations of the p variable
g, i=1,2, .., palternatively taken at their maximum
¢, and minimum 4 .

The characteristic polynomial of polytopic system
with controller (2) is given as follows

AV/(S): E(S)Pyl,j(s)"‘Fz(s)Pyz,j(S)’j =12,..,N (16)

A polytopic family of characteristic polynomials can
be represented as the convex hull

N N
Als)=3 4,4, %420, 32 =1 (17
= =

We make the assumption that all polynomials have
the same degree.

Theorem 2. Edge theorem (Bartlett, ez al., 1988)
Let O be a p-dimensional polytope that is its vertices
and edges describe the convex hull (17). Then the
boundary of R(Q) is contained in the root space of
the exposed edges of Q.

|
Due to Theorem 2 the characteristic polynomials
(16) will be stable if and only if the following set of
segments are stable

B(s) = {2, 5) 0= ) (o)} 6.)=12.... 27 (18)

Both i and ; has to be taken as the vertices number of
corresponding edges.

Substituting (16) to (18) after some manipulation one
obtains the following extremal transfer function for
affine system (14)

G,(s)= PVl,i+(1_ﬂ’)PVl,j , 2e(0,1) (29)
/U)VZ,,' +(1_/1)PV2,/‘

Lemma 1.
The controller (2) stabilizes the affine system (14)
for all 40 if and only if the controller stabilizes
the extremal transfer function for polytopic system
(19) for all 2€(0,1).

O
The problem addressed in the Theorem 1 deals with
a polytope and therefore using the Edge theorem can
solve it. In general, the sets of extremal transfer
functions (9) and (19) are quite different. While the
number of Gg(s) is equal to 32 (Gk(s) - 16) the
number of extremal transfer functions (19) depends

exponentially on the number of uncertain parameters
g,i=1,2,..,pandequal to p27*.
3.3 Multilinear case

Let the uncertain plant transfer function (1) be

_ Bu(s)By(s)--B,(5)
)= o) )

i i i N
where 13,;(3)=P<‘>’ +P1"S+"'+P,‘,’,,S .

Each Py(s), j=1,2,..,n(d) belongs to a linear
interval polynomial specified as

o e<pj{, ;Z>, i=12, j=04,...n(d), k=01....n,

with independently varying parameters. Let Kj,(s) and
S;(s) denote the respective Kharitonov polynomials
and Kharitonov segments of corresponding real
interval polynomial Py(s).

An extremal transfer function is given as follows
(Chapellat, et al., 1994)

Lemma 2.
The controller (2) stabilizes the multilinear system
(20) for the whole uncertainty box if and only if the
controller stabilizes the extremal transfer function
(21).

O
Note that the number of extremal transfer function of
(21) is 2.474".

Consider the transfer function of multilinear interval
system to be a ratio of multilinear polynomials with
independent parameters. A proper stable system with
transfer function of the form (1) will be considered
where

m 7

B(s)= ZC;(S)QDU(S) (22)
P9)= 3101, ()

with Ci(s) and H(s) being fixed polynomials and the
Dy(s) and Lj(s) being independent real linear interval
polynomials.

Let 4 and / denote the sets of coefficients of the
corresponding interval polynomials. 4 and / vary in a
prescribed uncertainty box 4 e A and [ eI1.

P1(s) and P,(s) are coprime polynomials over the box
Q=IIxA and it is assumed that p,(s)=0 for all

lell and s=jw, »>0. Introduce the Kharitonov
polynomials and segments associated with L;(s) and
Dy (s), respectively.

The extremal transfer function of (22) is given as
follows (Bhattacharyya, et al., 1995)



U FE(s)} (23)

where

TH)= 2 )V, () + )T, () @

The same equations hold for Qz(s) and Qx(s) with
polynomial Py(s).

Lemma 3.
The controller (2) stabilizes the multilinear system
(22) for all (d,/) if and only if the controller
stabilizes the extremal transfer function (23).

O
Now, consider a multilinear polytopic system where
the entries of the uncertainty vector 47 = [ql,,_.,qp] in

the transfer function (1) are in multilinear form.
The closed-loop characteristic polynomial is given as
follows (4)

Als)=F(s)B (s, q)+ F,(s)P,(s.9) (25)

Let the uncertain parameters €<qi1;i>' i=12,..p
belong to a p-dimensional uncertain parameter box Q
with N =27 vertices and p27~* edges.

Denote the characteristic polynomials in correspon-
ding vertices of Q as follows

Av(s,q)z {A(s): q,=4, or q; :5“ i=1,2,"-,p}= (26)

= {vl(s),...,vN(s)}

Let A(s) denote the convex hull of the vertex
polynomials 4 (s, ¢)

N

A(s)z ivllivi (s)’ Zl,. =1 (27)

i=1l

where 2, e<o, 1>.

Under the assumptions that

a) forany 4 <, the polynomials (25) and (26) are
of the same degree,

b) foranys=jw w>0, A(s)=0 in (27),

c) there exists at least one 4" e ¢ such that (25) is

stable,
the characteristic polynomial (25) is stable if the
convex hull (27) and equivalently the sets of
characteristic polynomial edges

E(s)z {xlvi(s)+(1—/1)vj (s): v, (s), v, (s)e A, (s,q)} (28)

are stable where ; ¢ (0,1)-

With respect to (25), the vertex characteristic
polynomials of (26) can be rewritten as follows

Vi :F1(S)VP1,'+F2(S)VP2," i=12...,N (29)

where v, (s), v,,(s) are the vertex polynomials of

B(s,q). P,(s,q), respectively.
A simple manipulation of the entries of E(s) yields

Ey (S) = Fl(s)l.)*"m:' + (1 - )')VPZJ' J+ (30)
+F (S)[ﬂ*"m; + (1 - ﬂ*)"m/]

With respect to (30), the extremal transfer function of
the multilinear polytopic system is as follows

I 6)+ 2 )
LR e i s R

4!
where ;. ; i,j=l,2,...,7—j2 25_'2 :

Note that the Mapping Theorem (Hollot, Xu, 1989)
shows that the image set of a multilinear interval
polynomial (25) is contained in the convex hull of
the vertices of QO (26). A sufficient condition for the
entire image set to exclude zero (Zero Exclusion
Principle) is that the convex hull excludes zero. This
suggests that stability of the multilinear set (25) can
be guaranteed by solving the stability of the convex
hull of the vertex polynomials (27).

Lemma 4.
The controller (2) stabilizes the multilinear polytopic
system with characteristic polynomial (25) for all
g eQ if the controller (2) stabilizes the extremal
transfer function (31).

O
Note that if Q is not an axis parallel box or the
dependency on parameters in the characteristic
polynomial (25) is not multilinear, the above lemma
does not hold.

4. EXAMPLES
Example 1

As a real example we have considered the problem of
robust controller design to control the speed of two
serially connected small DC motors.

The controlled process has been identified in three
working points using the ARMAX model. The
interval transfer function of the process is of the form

Gls)= A(s) _ PiS” + Pus+ Py (32)
Pz(s) pzzs2 T PaSt+ Py

where p,, =1, p, €[1.832.25], p,, €[0.64 0.67],
P, €[0.0110.025], p,, €[-0.58 —0.32], p,, €[1.54 2].

First design method

The robust controller design has been carried out
using the Nejmark D-curve method (Nejmark, 1978).
The method is based on splitting the space of
parameters to regions with an equal number of
unstable roots of the characteristic equation. In this
method the curve for P, I, D gain have been obtained.



Fig. 1 depicts the D-curve for choosing the
integration coefficient 7 of PID controller.
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Fig. 1. D-curve

The robust PID controller designed using this
method for 32 extremal transfer functions (9) is of
the form

Ky N

the degree of stability « = 0.633 has been achieved.
Note: The degree of stability with a negative sign is
equal to the maximum eigenvalue of the stable
closed loop system defined by the extremal transfer
function and a PID controller.

Second design method

The controller design is carried out by means of the
criterion of the minimum of integral of the squared
error (Igz) and the criterion of minimum integral of
squared error multiplied by time (I7sz). The integral
performance criterions provide information about the
control process on the basis of integral error for all
time values.

The algorithm for calculating Igz designed by
Nekolny (Nekolny, 1961) comes from the Parseval’s
integral in form

ct joo

1o = [l0Fa= L [e o €9

c— joo

where E(s) is the Laplace transform of the tracking
error

E(s)= D(s) _ d, " +-+ds+d, (35)
Als)  as"+-+as+a,

The integral of the square error multiplied by time
can be written as

L = TteZ(tﬁt (36)

For the integral (36), formulas in the closed form
have been derived.

Design of unknown controller parameters have been
carried out using minimax problem formulation

minmax{F; (x)} (37)

which is realized by the fiminimax function in the
Matlab  Optimization Toolbox. This function
minimizes the worst-case value of a set of
multivariable functions.

The robust PI controllers designed by the Iz and 75
criterions, respectively, using extremal transfer
functions Gp(s) (19) are of the form

R(s)=P+ L =086+ 22 (se) (38)
N N

R(s)=P+£:l.05+% (I1s£) (39)
N N

We achieved the degree of stability « =0.209 for the
Iz criterion and o = 0.17 for the I criterion.

Example 2

In this example the interval plant proposed by Hollot
and Yang (1990) has been considered

B(s) 10
= h) oo )

where p, e[t; 5000].

As it can be observed, this plant has only one
uncertainty parameter.

Third design method

The robust controller design is carried out by Bode
diagrams (Kuo, 1991). There are 404 extremal
transfer functions derived for linear interval
uncertainty. In the frequency domain a robust PI
controller for a required phase margin A@ = 50° has
been designed in the form

R(s)= K[l+ Ti ]: 0.03765 +0.00104 (41)
X s

where K = 0.0376 and T; = 36.2 [s].

50

o
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Fig. 2. Bode diagrams of the open loop system:
Gp(s).R(s)



Fig. 2 depicts Bode diagrams of the open loop
system. The achieved gain margin 4K and phase
margin A¢ are:

AK =342 dB 42)
A =495°

From the Bode diagrams it is possible to see that the
designed robust controller guarantees stability and
performance for linear interval transfer function with
uncertainties.

Fourth design method

We will design a robust controller for a linear system
(40) described by polynomial matrices (Henrion et
al., 2002). The design problem amounts to finding a
dynamical output-feedback controller with a transfer
function £, '(s)F,(s) such that the closed-loop

denominator matrix
Als)= F(s)B(s)+ F,(s)P,(s) (43)

is robustly stable for all admissible uncertainties.

Let us assume that the static feedback matrix K
satisfies structural LMI constraints and the controller
polynomial matrices Fi(s) = Fypo + Frus + ... and
Fo(s) = Fpo+ Fys + ... entering linearly in
polynomial matrix A(s) have a prescribed structure,
which we denote by the LMI

G(4)>0. (44)

For a PID controller the coefficients Fi(s) and Fa(s)
will be

Ll(S)=I<P+&+KDS (45)
Fz(s) s

where F20 = 0, Fz]_ = l, F22 =0 and FlO = K], Fll =
Kp, F12 = Kp.

Under these assumptions the following lemma
(Henrion et al., 2002) can be formulated

Lemma 5.

The transfer function in the affine form (14) with
uncertainty ¢;, i = 1,..., p is robustly stabilizable by a
constrained output feedback controller Fi(s), F5(s) if
for a stable nominal characteristic polynomial D(s)
of the same degree as polynomial matrices A,(s) =
P(s)Fu(s) + Po(s)F»(s), there exist some matrices
P, = P" satisfying the LMI

DA +A'D-H(P)>0,i=1,...,m (46)

with the additional LMI constraint (44).

|
In our case a nominal controller s
Rn(s) = 0.05 + 0.002/s +0.001s and with help of
SeDuMi we have obtained the robustly stabilizing
PID controller

R(s)=P+L+Ds= 071+ 21 1 2 54 (47)
N N

The achieved degree of stability is « = 0.003935.

5. CONCLUSION

The main aim of this paper has been to present a
survey of extremal transfer functions and robust
controller design using classical control theory
approach. The proposed robust controller design
procedures with extremal transfer functions
guarantee specificified performance and stability
with necessary and sufficient or sufficient stability
conditions.
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