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Abstract 
This paper deals with the robust controller design for 

linear SISO systems, with uncertainty. In the first part of 
this work extremal transfer functions of linear and 
multilinear systems in polytopic or interval form are 
described. The controller design is carried out using two 
methods. The first design method uses the integral 
criterion ISE (integral of the square of the error) and ITSE 
(integral of the square of error multiplied by time). The 
second design method is carried out in the frequency 
domain and is based on the required phase margin and 
settling time. The example illustrates application 
possibilities of extremal transfer functions. 

1 INTRODUCTION 
One of elementary conditions for the behaviour of 

process control systems is to ensure control loop stability. 
Ensuring stability and performance is tightly connected 
with the controller design, which requires sufficiently 
accurate knowledge of plant model available, e.g. 
knowledge of the plant transfer function etc. The aim of 
identification of control system is not only finding an 
object model but also to determine range of parameter 
changes of the object to be controlled. In practice, 
however, object parameters often change, e.g. due to 
working point or controlled process structure changes, 
etc. A mathematical description of such an object then 
consists of an infinite number of transfer functions. In 
such case the controller design by extremal transfer 
functions can be carried out. The controller parameters 
are to be chosen so as to simultaneously stabilize a finite 
number of transfer functions representing the so-called 
extremal transfer function of object. 

2 LINEAR MODELS OF PROCESS 
Let us assume that a transfer function is a result of an 

experimental object identification. The parameters of 
transfer function may change in different manners and we 
can to include them to several classes [4]. 

2.1 Interval systems 
In linear interval systems the coefficients of transfer 

function are changing independently within given 
intervals.  

 
 

The interval transfer function of process is of the form: 
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where mibbb iii ,...,0,, =∈ , 1,...,0,, −=∈ njaaa jjj  

The number of transfer functions of the object is 
infinite as results from (1) and therefore a design of 
controller parameters cannot satisfy stability and 
performance requirements for the object (1) so that only 
several transfer functions from whole set can be 
stabilized. 

We have carried out design of controller parameters for 
the interval system (1) using extremal transfer functions. 
The extremal transfer functions represent a finite number 
of object´s transfer functions with invariable parameters 
which uniquely determine stability of the whole set of 
transfer functions with the proposed controller. 

We know several extremal transfer functions. In our 
case the extremal transfer functions [1] have been used 
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where ( )4,3,2,1∈i ; ( ) ( ) ( ) ( ) ( ){ }4,3,4,2,3,1,2,1, ∈kj ;       
    [ ]1,0∈λ , ( )sK B , ( )sK A  are Kharitonov polynomials. 
The number of extremal transfer functions is independent 
from the order of the object (1) but depends on the step λ. 

2.2 Polytopic systems 
If during the identification it is found out that in the 

transfer function of the object some coefficients are 
changing simultaneously, then the transfer function of 
such an object can be written as follows 
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where ( ) ( ) ( ) ( ) pisasasbsb ii ,...,2,1,,,, 00 =  are known 
polynomials with fixed coefficients and coefficients iq  
are unknown, but varying within a prescribed interval 

iii qqq ,∈ . If we let to change coefficients 
ii qq =  or 

ii qq =  so we obtain p2  transfer functions with fixed 
coefficients. 



These transfer functions can be placed into vertices of a p 
dimensional uncertainty box and then the transfer 
function (3) describes a polytopic system. 
Stability of the closed-loop with the transfer function (3) 
requires that the designed controller guarantees closed-
loop stability with p2  transfer functions of the object as 
well as closed-loop stability on each edge of the 
uncertainty box. 

2.3 Multilinear systems 
There are situations when several linear interval 

systems (1) or (3) are connected in series. In such a case 
the global controlled object is considered to belong to the 
multilinear systems class.  
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system. 
 We can obtain a multilinear system also in case of a 
controlled system with a variable time delay 
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where D varies within the given time delay interval.  
When we replace the term Dse−  by a second-order Padé 
approximation 

 
1

2
2

2
2

s
122

1.s
122

1
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−≈

DsDDsDe Ds  (6) 

From (5) and (6) it can be seen that we have obtained a 
multilinear system.  
 

In the controller design we have used the extremal 
transfer function of a multilinear polytopic object 
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where ji ≠ , Bv , Av  are vertex polynomials of numerator  
and denominator (4), p is the number of uncertainties 
considered, 1,0∈λ . 

3 ROBUST CONTROLLER DESIGN 
 The robust controller design will be carried out by two 
methods. 

3.1 First design method   
The controller design is carried out based on the required 
settling time treg, phase margin Δϕ0 and maximum 
overshoot ηmax. The method for determining ηmax and treg 
from the open loop Bode diagrams was designed by 
Reinisch [3]. 
 
 Reinisch derived with a sufficient precision for all 
systems,  whose   open   loop   transfer   function   include  

integrator and is of the form 
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the following performance measures: 
Dependency of the maximum overshoot ηmax on the 
argument of the open loop frequency transfer function 
ϕ(ω0) is 
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 If we consider a dead zone δ = 5 [%] and a change of 
damping coefficient b∈ (0.25, 0.65) then  
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The inequality (10) specifies the settling time with a 
sufficient precision from the crossover frequency ω0 at 
which the G0(jω) magnitude is equal 1. 
 Based on the required phase margin and using (9) and 
(10) we can design a robust controller from Bode 
diagrams. 

3.2 Second design method  
 The controller design is carried out respectively by the 
criterion of the minimum of integral of the error square 
(ISE) and the criterion of minimum integral of error square 
multiplied by time (ITSE). The integral performance 
criterions provide information of the control process on 
the basis of integral error for all time values. 
 The algorithm for calculating ISE designed by Nekolny 
[2] comes from the Parseval’s integral in form 
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where E(s) is the Laplace transform of the tracking error 
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 The integral of the square of error multiplied by time 
can be written as 
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For the integral (13) formulas in the closed form have 
been derived. 
 
 Design of unknown controller parameters have been 
carried out by minimax problem 
 

{ }
( ){ }xFiFx i

maxmin  (14) 

which is realized by fminimax function in the Matlab 
Optimization Toolbox. This function minimizes the 
worst-case value of a set of multivariable functions. 



4 EXAMPLES 
Example 1: 
 Consider the transfer function of a glass furnace with 
output of temperature to supplied energy in form of a 
multilinear polytopic system with variable time delay as 
follows: 
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where ( ) 2.030 += ssb ; ( ) 05.05.01 += ssb ; 1;1−∈q ;  

      ( ) 112029255515 23
0 +++= ssssa ; 10;5∈D ;    

      ( ) ssssa 10175495 23
1 ++= . 

The time delay sDe−  has been replaced by a second-order 
Padé approximation (6).  
 There are 36 extremal transfer functions (7) derived for 
multilinear polytopic uncertainty and to each of them a 
Laplace transform of the tracking error is assigned (12). 
The robust PID controller designed by Nekolny algorithm 
for calculating ISE and by minimax problem is of the form 
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with P = 45.8 , =IT 112.7 [s], =DT 11.3 [s]. 
 The closed loop step responses of output value (y) and 
control value (u) under the designed robust controller are 
shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Step responses of the closed loop system 
 
The step responses (Fig. 1) of output value (y) have a 
maximum overshoot ηmax = 34.4 [%] and a settling time    
treg = 130 [s]. 
 
Example 2: 
 Consider the process from Example 1 without the 
variable time delay and described by the interval transfer 
function as follows: 
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where b1 = [2.5, 3.5], b0 = [0.15, 0.25], a3 = [5020, 6010], 
   a2 = [2750, 3100], a1 = [110, 130], a0 = 1. 

There are 192 extremal transfer functions derived for 
linear interval uncertainty. 
 Parameters of the robust PID controller designed on the 
basis of the guaranteed phase margin Δϕ0 = 75° and 
settling time treg = 90 [s] are P = 61, =IT 114.8 [s], 

=DT 0.24 [s]. 
 The closed loop step responses of output value (y) and 
control value (u) under the designed robust controller are 
shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Step responses of the close loop system 
 

The step responses (Fig. 2) of output value (y) have a 
maximum overshoot ηmax = 12 [%] and treg = 110 [s]. 

5 CONCLUSIONS 
 The aim of this paper was to present chosen real 
models of objects for which there are robust controller 
design methods and software support available. 
Advantage of the design by the criterion of the minimum 
of integral of the error square (ISE) is a general 
applicability but its drawback is over-estimation of big 
and under-estimation of small tracking errors. Therefore 
the response of the designed control system is more 
oscillating with a longer settling time. 
Main benefits of the by Reinisch derived basic 
performance measures are their simple calculation and a 
sufficiently general validity. 
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